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ABSTRACT

With recent advances in missile and hypersonic vehicle technologies, the need for

being able to accurately simulate missile-target engagements has never been greater.

Within this research, we examine a fully integrated missile-target engagement envi-

ronment. A MATLAB based application is developed with 3D animation capabilities

to study missile-target engagement and visualize them. The high fidelity environment

is used to validate miss distance analysis with the results presented in relevant GNC

textbooks [51], [52] and to examine how the kill zone varies with critical engagement

parameters; e.g. initial engagement altitude, missile Mach, and missile maximum ac-

celeration. A ray-based binary search algorithm is used to estimate the kill zone

region; i.e. the set of initial target starting conditions such that it will be “killed”.

The results show what is expected. The kill zone increases with larger initial missile

Mach and maximum acceleration & decreases with higher engagement altitude and

higher target Mach. The environment is based on (1) a 6DOF bank-to-turn (BTT)

missile, (2) a full aerodynamic-stability derivative look up tables ranging over Mach

number, angle of attack and sideslip angle (3) a standard atmosphere model, (4) actu-

ator dynamics for each of the four cruciform fins, (5) seeker dynamics, (6) a nonlinear

autopilot, (7) a guidance system with three guidance algorithms (i.e. PNG, optimal,

differential game theory), (8) a 3DOF target model with three maneuverability mod-

els (i.e. constant speed, Shelton Turn & Climb, Riggs-Vergaz Turn & Dive). Each

of the subsystems are described within the research. The environment contains lin-

earization, model analysis and control design features. A gain scheduled nonlinear

BTT missile autopilot is presented here. Autopilot got sluggish as missile altitude

increased and got aggressive as missile mach increased. In short, the environment is

shown to be a very powerful tool for conducting missile-target engagement research -

a research that could address multiple missiles and advanced targets.
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LIST OF SYMBOLS

[.]’ superscript ’ denotes matrix transpose

[.]b superscipt b denotes body reference frame

[.]i superscipt i denotes inertial reference frame

[.]s superscipt s denotes seeker reference frame

[.]v superscipt v denotes vehicle reference frame

[.]w superscipt w denotes aerodynamic wind reference frame

a Sonic velocity (speed-of-sound); varies with Temperature T

A×B Cross product between A and B

Ag Gravitational acceleration; defined as [0, 0, g]
′i or [Agx , Agy , Agz ]

′b.

Am Inertial acceleration of CG0; defined as [Amx , Amy , Amz ]
′b.

At Inertial acceleration of target; defined as [Atx , Aty , Atz ]
′i.

Atc Commanded target acceleration; defined as [Atxc , Atyc , Atzc ]
i.

AmzL The limited pitch acceleration command generated by the autopilot.

Amzmax Max. value autopilot allows for commanded pitch acceleration.

Ant The desired target normal acceleration.

Ayc, Azc Commanded acceleration the autopilot receives from guidance.

CD Drag from pitch fin deflection δq

CDT Base drag due to Mach.

CG Instantaneous center-of-gravity; moves relative to CG0 as fuel

burns; located by [Scx , 0, 0]b.

CG0 Initial center-of-gravity; Reference point for missile location & in-

ertial dynamics; Co-origin for several non-inertial reference frames;

located by [Smx , Smy , Smz ]
i, [0, 0, 0]b, [0, 0, 0]s, [0, 0, 0]v & [0, 0, 0]w.
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CLβ Roll moment from sideslip.

CLP Roll damping moment from pitch rate.

CM Pitch moment aerodynamic coefficient.

CMα Pitch Moment from Angle of Attack.

CNα Lift due to Mach.

CNβ Yaw moment from Sideslip.

CNδr Yaw moment from yaw fin deflection.

CNR Yaw Damping Moment - Yaw Rate.

CYβ Side Force from Sideslip.

CLδq Roll Moment from Roll Fin Deflection.

CMδq
Pitch Moment from Pitch Fin Deflection.

CNδq Lift from Pitch Fin Deflection.

CNδr Yaw Moment from Yaw Fin Deflection.

CYδr Side Force from Yaw Fin Deflection.

CX Drag aerodynamic coefficient.

CY Side force aerodynamic coefficient.

dm Impulse change in mass (5.75 slug)

F1,F2,F3,F4 Deflection anlges of the missile’s true steering fins, max = 20 deg

(Fx, Fy, Fz) Aerodynamic (wind) force acting at CG0; defined in the body

frame. Fx = body frame drag, Fy = side force and Fz = lift.

Fg Gravitational force acting at CG0; defined as [Fgx , Fgy , Fgz ]
b.

Fie The difference between the actual and commanded fin positions.

Fis The new commanded fin position, before the position filter.

Fm Total external force acting at CG0; defined as [Fmx , Fmy , Fmz ]
b.

Fmax Maximum angle allowed for fin actuators, (20 deg).

Ḟmax Maximum Rate allowed for fin actuators, (600 deg
sec

).
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Fp Propulsive force acting at CG0; defined as [−Thrust, 0, 0]b.

Fw Aerodynamic (wind) force acting at CG0; defined as [D,C, L]w

g Gravitational acceleration; decreases with inertial altitude hi.

g0 Gravitational acceleration at sea level, 45 degrees North latitude

(32.174 ft
sec

).

Gg Gravitational moment acting about CG0; defined as

[Ggx , Ggy , Ggz ]
b.

Gm Total external moment acting about CG0; defined as [L,M,N ]b.

Gw Aerodynamic (wind) moment acting about CG0; defined as

[Gwx , Gwy , Gwz ]
b.

h Geopotential (constant-gravity) altitude above sea level; used to

calculate air pressure, temperature T and air density ρ.

hi Inertial altitude above sea-level; equals |Smz | when referring to the

missile or |Stz | when discussing the target; used to compute g

Hm Total angular momentum about CG0; defined as [Hmx , Hmy , Hmz ]
b.

ImpFrac Fraction of Impulse accumulated at time t.

ImpNorm Impulse described as a normalized linear function of time t.

Impulse Time integral of Thrust; increases with time t.

Ixx Moment of inertia about the body frame Xb-axis; decreases with

time t.

Iyy Moment of inertia about the body frame Y b-axis; decreases with

time t.

Izz Moment of inertia about the body frame Zb-axis; decreases with

time t.

Ixxo Initial value of moment of inertia Ixx, (0.34 slug − ft2).

Iyyo Initial value of moment of inertia Iyy, (34.1 slug − ft2).
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Izzo Initial value of moment of inertia Izz, (34.1 slug − ft2).

L Body frame roll moment, parallel to Xb-axis.

Lref Effective chord length of the missile airframe, (0.0625 ft).

m(t) Instantaneous missile mass effectively located at CG; decreases with

time t. Denoted ‘Mass’ in program.

mf Mass of expended fuel; increases with time t.

m0 Initial value of missile mass m, (5.75 slug).

M Body frame pitch moment, parallel to Y b-axis.

Mach Vehicle airspeed Vb normalized to local speed-of-sound SOS.

N Body frame yaw moment, parallel to Zb-axis.

P Body frame roll angular velocity.

pg1 Nominal gain used in proportional guidance, is equal to 3.0.

pg2 Nominal gain used in proportional guidance, is equal to 3.0.

Pm Total linear momentum of CG0.

Ps Projection onto linear subspace defined by S.

Q Body frame pitch angular velocity.

Qdp Dynamic air pressure acting on a slow aircraft as it moves through

the atmosphere at airspeed Vb.

Qsl Dynamic air pressure times the reference area times the refernce

length.

R Body frame yaw angular velocity.

R0 Sea-level radius of earth, (20,903,264 ft).

Range Magnitude of Sr or Ss.

SOS Speed of Sound.

Sc Displacement of CG from CG0; increases with time; defined as

[Scx , 0, 0]b.
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Sm CG0 Displacement from [0, 0, 0]i; increases with time; defined

[Smx , Smy , Smz ]
i.

Sr Target Displacement from [0, 0, 0]v; increases with time; defined

[Srx , Sry , Srz ]
v.

Sref Effective cross-sectional area of the missile airframe, (0.307 ft2).

Ss Target Displacement from [0, 0, 0]s; increases with time; defined

[Ssx , Ssy , Ssz ]
s.

St Target Displacement from [0, 0, 0]i; increases with time; defined

[Stx , Sty , Stz ]
i.

t Instantaneous time.

Tchange Half the time required to make a thrust transition, 0.025 sec.

Thrust Magnitude of propulsive force Fp
b; modeled by Th1 & Th2.

Th1 First stage missile thrust, (9250 lbs).

Th2 Second stage missile thrust, (2140 lbs).

U Body Frame inertial Xb-velocity.

V Body Frame inertial Y b-velocity.

Vb Missile body velocity.

(Vmx , Vmy , Vmz) Missile velocity in the inertial frame.

Vr Missile target relative velocity, defined as [Vrx , Vry , Vrz ]
v.

W Body frame inertial Zb-velocity.

X Body frame drag.

Y Body frame sideforce.

Z Bpdy frame lift.

∆Impulse Total change in Impulse after fuel is expended.

∆Ixx Total change in Ixx after fuel is expended.

∆Iyy Total change in Iyy after fuel is expended.
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∆Izz Total change in Izz after fuel is expended.

∆m Total change in mass m after fuel is expended.

∆Scx Total change in Scx after fuel is expended.

α Angle of attack ; positive value locates Vm on +Zb side of body

frame (XY )b-plane.

β Sideslip angle ; positive value locates Vm on +Y b side of body frame

(XZ)b-plane.

δpc Effective roll fin deflection angle command, (aileron).

δqc Effective pitch fin deflection angle command, (flapperon).

δrc Effective yaw fin deflection angle command, (rudder).

δsc Effective squeeze mode, ILAAT combining logic.

θ Euler pitch angle; positive value locates body frame Xb-axis on -Zv

side of vehicle frame (XY )v-plane.

θc commanded seeker elevation angle.

θe Measured seeker elevation error angle.

θGmax Maximum allowed seeker elevation angle, (±70 deg).

θG, θs Seeker elevation gimbal angle; positive value locates body frame

Xb-axis on +Z side of vehicle frame (XY )s-plane.

θ̇Gmax Maximum allowed rate for seeker servos, (75 deg
sec

).

θ̇Gsat Limited seeker elevation rate.

ζf Fin actuator damping ration, 0.30.

ζs Seeker servo damping ration, 49.5.

ρ Mass density of the atmosphere; decreases with geopotential alti-

tude h.

σa Vehicle frame azimuth LOS angle; positive values locates Sr on

+Y v side of vehicle frame (XZ)v-plane.
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σe Vehicle frame elevation LOS angle; positive values locates Sr on

-Zv side of vehicle frame (XY )v-plane.

σep Seeker frame pitch LOS angle error.

σey Seeker frame yaw LOS angle error.

σp Seeker frame pitch LOS angle; positive value locates Ss on -Zs side

of seeker frame (XY )s-plane.

σy Seeker frame yaw LOS angle; positive value locates Ss on +Y s side

of seeker frame (XZ)s-plane.

τp Propulsion time-constant for exp. thrust transitions, 0.010 sec.

τt Target response time constant.

φ Euler roll angle; positive value locates body frame Y b-axis on +Zv

side of vehicle frame (XY )v-plane.

ψ Euler yaw angle; positive value locates body frame Xb-axis on +Y v

side of vehicle frame (XZ)v-plane.

ψc Commanded seeker azimuth angle.

ψe Measured seeker azimuth error angle.

ψGmax Maximum allowed seeker azimuth angle, (±65 deg).

ψG, θs Seeker azimuth gimbal angle; positive value locates body frame Xb-

axis on -Y s side of vehicle frame (XZ)s-plane.

ψ̇Gmax Maximum allowed rate for seeker servos, (75 deg
sec

).

ψ̇Gsat Limited seeker azimuth rate.

ωb Angular velocity of body frame about its own axis relative to vehicle

frame; defiend as [P,Q,R]
′b.

ωf Fin actuator undamped natural frequency, 195.0077 rad
sec

.

ωs Seeker servo undamped natural frequency, 0.041 rad
sec

.

Ωm
i Missile inertial angular velocity, (Ωmx,Ωmy,Ωmz)

i.
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Chapter 1

INTRODUCTION & OVERVIEW OF WORK

1.1 Introduction and Motivation

A comprehensive procedure to ensure robust missile flight dynamics will include -

defining mission requirements, wind tunnel testing, mathematical analysis, computer

simulation and flight demonstration [55]. In this research, a MATLAB application

has been developed to evaluate the performance of missile guidance and control sys-

tem [1], [5], [15] and [17]. The application contains a complex dynamic simulation,

displays missile-target intercept in 3D Animation with different viewpoints, provides

a user friendly graphical user interface to input the initial flight condition and to view

the post flight data plots. This research work includes miss distance analysis and kill

zone (missile launch envelope) analysis with respect to different missile-target en-

gagement parameters. Also, linear model of the missile is analyzed at different flight

conditions and its dynamic flight modes are studied. A detailed comprehensive study

of the Bank-to-Turn (BTT) missile gain scheduled nonlinear autopilot is presented.

The simulation consists of a six-degree-of-freedom Extended Medium Range Air-

to-Air Technology (EMRAAT) missile (Range upto 200 miles) in pursuit of a three-

degree-of-freedom evading target (e.g. enemy aircraft). Current Medium Range mis-

siles have a range upto 3000 km. The simulation includes realistic missile and actu-

ator dynamics, an autopilot, several missile guidance laws, seeker navigation model,

various target models and several numerical integration methods. Missile dynamics

include nonlinear features such as speed and altitude dependent aerodynamics, fuel
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consumption effects on mass and moments of inertia, nonlinear actuator and sensor

dynamics with position and rate saturation.

This kill zone estimation problem arises mainly as a resource allocation problem.

Imagine an enemy aircraft is spotted by military radar. Target has to be tracked

down and destroyed before it damages any important resources of a country. Even

if there are many missile launching centres, they have to be operated intelligently so

that every missile launch turns out to be successful. So depending upon the need of

the hour and position of the target, the results presented in this research shall quickly

guide us through operating missiles intelligently. Using the program developed by [1]

to simulate the missile to track and hit the target from any given starting position,

this research tries to extend the work done by [1] to simulate the missile from different

starting positions and estimate the kill zone for a given target. Thus, if the kill zone

estimation for different flight conditions are known, missile launching centres can be

operated with high success rate in tracking any enemy target aircrafts.

1.2 Literature Survey: Missile Guidance System - State of the Field

In an effort to shed light on the state of missile system modeling, control design,

and post flight data analysis, the following topically organized literature survey is

offered. An effort is made below to highlight what technical papers/works are most

relevant to this thesis. All missile-target simulations are carried out using C program

or MATLAB and the simulation data was analyzed using Matlab to come up with

the results discussed in this thesis. In short, the following works are most relevant

for the developments within this thesis:

• Traditionally, a computationally intensive simulation such as Missile-Target En-

gagement required working on a mainframe or workstation [18]. Nowadays even

laptops can do very high end simulations at ease, given the hardware speed and
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improvement of software algorithms over the years.

• Initial attempt in missile-target simulation was carried out in a mainframe pro-

gram by [4] and it offered very good speed but was lacking in clear visual aid

to facilitate interpretation.

• Subsequent attempt was made by [2] where simulation was carried out using

Visual Basic program on a personal computer but it suffered from speed and

maintainability.

• Successful attempt of overcoming those difficulties was carried out by [1] where

a C program was developed to simulate the missile-target engagement on a per-

sonal computer with very good visualization. It even successfully implemented

graphical display of missile-target engagement using target maneuvers devel-

oped by [3] and [4]. Initial simulink version of above simulation was presented

by [6], but it was still incomplete without good animation graphics to visualize

the missile target engagement because it was not available at that time.

• The Aerodynamic coefficients used in missile dynamics are discussed in detail

at [20]. Using polynomial fit to mathematically model the wind tunnel data

about the missile aerodynamics should fasten the computation time of future

missile guidance & control system simulation.

• The nonlinear autopilot used in this research work was originally designed by

[4] with references from [25], [10] and [18]. The gain scheduling used in this

research can be read in detail from [40] and [28]. The need for a nonlinear

autopilot is clearly explained in [11].

• Robustness analysis is performed to evaluate the controller (autopilot) perfor-

mance [29], [26] and the idea of studying the closed maps [21] at different loop
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breaking points is addressed in books [80], [78] and works done by [43], [44] and

many others.

• The complex nonlinear differential equations governing the 6DOF missile dy-

namics need to be solved and numerical integration methods explained in [68]

and [13] are used in this research. Engagement geometry analysis presented in

this research helps us in selecting an optimal step size for the numerical integra-

tion used and the problem of actuators hitting their saturation levels frequently

due to poor step size selection is addressed in [41], [38] [45] and [46].

• Miss distance analysis results from renowned GNC texts [51] and [52] motivates

the miss distance analysis done in Chapter 8 of this research work. The high

fidelity environment developed by [5] and [2] is used in this research to validate

the miss distance profiles presented in the above mentioned GNC text books.

• The main challenge was coming up with an efficient search algorithm in 3D

space to vary the missile starting position and see whether it hits the target

starting from those starting positions. This is where ideas developed by [22],

[72] were helpful in narrowing down the algorithm selection to Binary Search

to come up with different missile starting positions intelligently.

• Entire search space is divided into rays starting from origin where missile is

assumed to be located. Along each ray, binary search algorithm is used to find

first hit position, first miss position, last hit position and last miss position.

Then all the hit positions are joined together to form a boundary, which can

be interpreted as a Kill Zone [14], [27], [37], [30], [24], [23] a closed space from

where if the missile starts to track the target, it is assured to hit it with greater

probability.
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• Visualization of missile target engagement is the motivation factor for devel-

oping a MATLAB 3D Animation. Previous works in trying to simulate and

animate aerospace vehicles were done by [9] and the steps to build the anima-

tion are available online [73].

An attempt is made below to provide relevant insightful technical details.

• Missile Modeling. Siouris’s book [51] and Zarchan’s book [52] address mod-

eling for bank-to-turn missiles. Linearization of missile dynamics is addressed

within [62]. Within this thesis, the focus is on guidance, navigation and control

of bank-to-turn missiles.

• Nonlinear Autopilot. The need for a nonlinear autopilot for missile flight

control system is addressed within the paper [10] and [11]. Within this text, it

is shown that while the missile is inherently non-minimum phase in nature and

a robust autopilot is needed to stabilize that and make the missile to operate

across different flight conditions.

• Classical Controls. Classical control design fundamentals are addressed within

the text [64]. Internal model principle ideas - critical for command following and

disturbance attenuation - are presented within [64]. General PID (proportional

plus integral plus derivative) control theory, design and tuning are addressed

within the text [80]. Fundamental performance limitations are discussed within

[78], [64].

• Multivariable Control. General multivariable feedback control system analy-

sis and design is addressed within the text [65]. Linear quadric regulator (LQR)

and LQ servo concepts are discussed within [79], [65].
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• Relevant Nonlinear Control. In order to acheive adequate performance over

the entire envelope of operating conditions, the autopilot of a modern air-to-air

tactical missile must be nonlinear [10]. The nonlinearity arises either through

the gain-scheduling of linear point designs or through the direct application of

nonlinear control technique to the problem.

• Multiple Loop Control. It is interesting to ask the following question while

studying about designing missile flight control system.

When do we need multiple control loops and

why a single feedback loop won’t suffice?

The time-scale separation experienced by missiles between “slow” translational

dynamics and “fast” rotational dynamics calls for a two loop strategy imple-

mentation, as single unified (single loop) framework would become ineffective

here [7]. Single loop strategy fails because of following reasons,

– Control surface deflections directly respond to the translational error cor-

rection demands, which may lead to the instability of the rotational dy-

namics.

– This is especially true for control surfaces located either at the front or at

the tail of the missile (we have a tail controlled missile in our consideration

here in this research), because deflections of these control surfaces can

create only minor forces, whereas they create large moments due to long

moment arm from the center-of-mass.

– Consequently these control surfaces are ineffective in directly correcting

translational errors, whereas they can be very effective in turning the flight
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vehicle.

Therefore, for a successful flight control system, the design must exploit the

time-scale separation that exists between translational and rotational motions

of the center-of-mass.

• Autopilot Innermost-Loop Control. A nonlinear controller with its gains

scheduled as function of different flight conditions is implemented here. Inner-

most loop is mainly for stabilizing the missile while helping the missile to follow

the commanded angular rates by issuing proper fin commands to the actuators.

Essentially innermost autopilot loop is meant for controlling angular rates here,

referred sometimes as Rate Loop.

• Autopilot Intermediate-Loop Control. Intermediate loop is mainly for

controlling the missile bank angle, angle of attack and sideslip angle while help-

ing the missile to follow the commanded bank angle which is generated by the

BTT Logic module.

• Outer-Loop Guidance Control. Within this thesis, various outer-loop guid-

ance control laws are examined. Usually referred as the Guidance Loop, this

will help the missile to steer towards the target (read it as position control loop).

Essentially this is also proportional controlled loop with gains determined by

the guidance laws.

1.3 Goals and Contributions

Miss distance of the target with respect to the missile was analyzed upon varying

various parameters of missile and the results are presented in this work and they agree

[1; 17; 16; 15; 33]. This research work will address and provide concrete answers to see

if the Kill Zone Estimation done using binary search algorithm correlates well with
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the miss distance results presented in above mentioned papers. Missile parameters

such as initial altitude, initial mach and maximum missile acceleration are varied in

different sizes, one at a time and the variation of estimated kill zone is analyzed.

Before pursuing the study, it is instructive to acknowledge some simple ideas and

intuitions below which are answered in this research.

1.4 Contributions of Work: Questions to be Addressed

Within this thesis, the following fundamental questions are addressed. When

taken collectively, the answers offered below, and details within the thesis, represent

a useful contribution to researchers in the field.

Why should a hierarchical inner-outer loop control architecture be

used? Hierarchical inner-outer loop controllers are found across many industrial/-

commercial/military application areas (e.g. aircraft, spacecraft, robots, manufactur-

ing processes, etc.) where it is natural for slower (outer-loop generated) high-level

commands to be followed by a faster inner control loop that must deliver robust

performance (e.g. low frequency reference command following, low-frequency distur-

bance attenuation and high-frequency sensor noise attenuation) in the presence of

significant signal and system uncertainty. A well designed inner-loop can greatly sim-

plify outer-loop design. An excellent example of inner-outer loop architectures are

used in this missile-target application arena. Here, an autopilot (inner-loop)1 follows

commands generated from the guidance system (outer-loop). More substantively,

inner-outer loop control structures are used to tradeoff properties at distinct loop

breaking points (e.g. outputs/errors versus inputs/controls) [43], [44].

1Within an autopilot there is typically very critical lower-level actuator control inner-loops.
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Inner-Loop Control What are typical inner-loop objectives? Typical inner-

loop objectives can be speed control; i.e. requiring the design of a angular speed

control system. Within this thesis, inner-loop control for our BTT missile specifically

refers to nonlinear gain scheduled autopilot.

What is a suitable inner-loop control structure? When is a classical

(decentralized) PI structure sufficient? When is a multivariable (central-

ized) structure essential? For many applications such as differential drive robotic

vehicle, a simple PI/PID (decentralized) control law with high frequency roll-off and

a command pre-filter suffices (see Chapters 3 and 6). Such an approach should work

when the plant is not too coupled and the design specifications are not too aggressive

relative to frequency dependent modeling uncertainty. A multivariable (centralized)

structure becomes essential when the plant is highly coupled such as the missile

control system considered within this thesis and the design specifications are very

aggressive (e.g. high bandwidth relative to coupling/uncertainty)[65].

What are the limitations on the bandwidth of the missile flight control

system? How does the presence of RHP zeros (nonminimum phase) and

RHP poles affect the closed loop bandwidth? The pitch up instability phe-

nomenon present in all tail controlled vehicles give rise to both RHP pole and RHP

zeros in system. While the unstable pole demands a minimum bandwidth to stabilize

the system, the nonminimum phase zero poses an upward limit on the maximum

bandwidth of the system. Thus going by the thumb rule, the bandwidth of a system

with RHP pole, ‘p’ and RHP zero, ‘z’ is given by following equation.

2 |p| ≤ Bandwidth ≤ |z|
2

(1.1)

What is a suitable outer-loop control structure? When is a more com-

plex structure needed? Suppose that an inner-loop speed control system has been
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designed. Suppose that it looks like a
s+a

. It then follows that if position is con-

cerned, then we have a system that looks like
[

a
s(s+a)

]
; i.e. there is an additional

integrator present. Given this, classical control (root locus) concepts [64] can be

used to motivate an outer-loop control structure Ko = g(s + z). In an effort to

attenuate the effect of high frequency sensor noise, one might introduce additional

roll-off; e.g. Ko = g(s+z)
[

b
s+b

]n
where n = 2 or greater. (See work within Chapter 6)

1.5 Overview of Thesis

In this research, a MATLAB application is developed and used to evaluate the

performance of missile guidance and control systems. The program simulates and

uses MATLAB 3D Animation using VRML toolbox to display the missile-target air-

to-air engagement. The endgame portion of the engagement is of particular interest

whereby the target maneuvers causing the missile controls to saturate and possibly

induce instability [76]. The missile controls may saturate in the thin air found at

higher altitudes or when the actuator saturation limit is small. It would be desirablle

to visualize this phenomenon and quantify it and use the techniques in [41], [39], [34],

[45], [42] and [46] to prevent it. The simulation includes realistic missile and actuator

dynamics, various guidance systems (proportional, optimal and differential game), a

seeker navigation system model and various target models. The target represents a

simplified version of a high performance enemy aircraft. The three-degree-of-freedom

target is modeled with its acceleration limited to ±9 Gs, values tolerable to human

pilot.
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Figure 1.1 illustrates how the above systems interact with one another, Each

subsystem is briefly discussed as follows:

Figure 1.2: Organization of MATLAB Program: 3 Modules.

Missile Dynamics. A set of nonlinear ordinary differential equations capturing aero-

dynamic, atmospheric and variable mass effects are used to model an EMRAAT BTT

missile. The model relates four controls (fin deflections - F1, F2, F3, F4) to the missile’s

coordinate velocities (Vmx, Vmy, Vmz) and its roll, pitch and yaw angles (φ, θ, ψ).

Actuator Dynamics. Each of the four missile fins is controlled by a servo-based

actuation system - modelled by a nonlinear underdamped system with position and

rate saturations.

Autopilot. Because of the inherent instabilities associated with missiles, stability

augmentation systems are essential. The autopilot provides the added stability and

ensures that acceleration commands from the guidance system are properly followed.

More precisely, the autopilot uses feedback to process the guidance commands and

deliver appropriately coordinated fin commands to the actuators.

Guidance System. The purpose of the guidance system is to issue appropriate

acceleration commands to the autopilot on the basis of target information obtained

12
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from the seeker/navigation (target sensing) system.

Seeker/Navigation System. The seeker/navigation (target sensing) system gener-

ates target line-of-sight (LOS) rate information which is used by the guidance system.

Target Dynamics. Different models are used to reflect the maneuverability and

intelligence of the target. Each model has 3 degree of freedom.

The prime objective is to minimize the distance 1 between the missile and the

target within a limited time.

1.6 Organization of Thesis

The remainder of the thesis is organized as follows.

• Chapter 2 (page 16) presents an overview for a general 6DOF missile equations

of motions and 2nd order dynamics governing 4 missile fin actuators.

• Chapter 3 (page 55) describes the linearization routine followed in linearizing

the nonlinear missile plant. The ideas presented here include analysis of all dy-

namic flight modes of missile with respect to different flight parameters. This

chapter also provides a foundation for the work in Chapter 6 where both au-

topilot and plant analysis is done together.

• Chapter 4 (page 114) presents seeker dynamics and the 6DOF missile guidance

laws that helps the missile to intercept a maneuvering target. Three different

guidance laws are described.

1Miss distance is defined as the final range between missile and target, after the missile has tried

to intercept the target.
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• Chapter 5 (page 129) describes 3DOF target modeling and its three different

maneuvering modes are discussed in detail.

• Chapter 6 (page 135) describes modeling and control issues for a Bank-To-Turn

(BTT) missile using a nonlinear autopilot. Linearization of missile autopilot

is discussed and this chapter serves as the basis for main control design. This

chapter contains the main work that was conducted in this research.

• Chapter 7 (page 184) describes the usage of different numerical integration

techniques. The chapter serves as the basis for selection of optimal step size for

numerical integration through engagement geometry analysis.

• Chapter 8 (page 196) describes the effect of different missile and target param-

eters on the final miss distance of a missile as described in [51] and [52]. The

chapter serves as the basis for Chapter 9, which is just an extension of chapter

8 ideas in a different perspective.

• Chapter 9 (page 219) describes the effect of different missile and target param-

eters on the estimated Kill zone of a missile using binary search algorithm.

• Chapter 10 (page 235) describes modeling and animating the entire missile-

target engagement using VRML toolbox of MATLAB. 3D animation results

using VRML toolbox and initial graphical user interface development are dis-

cussed.

• Chapter 11 (page 248) summarizes the thesis and presents directions for future

missile research. While much has been accomplished in this thesis, lots remains

to be done.

• Appendix A (page 258) contains C program implementation of Binary Search

algorithm to estimate kill zone. Also MATLAB files to plot the kill zone is

14
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included in this section.

• Appendix B (page 264) contains MATLAB ‘m’ files used in this thesis for plot-

ting linearized plant and autopilot analysis plots.

1.7 Summary and Conclusions

In this chapter, we provided an overview of the work presented in this thesis and

the major contributions. A central contribution of the thesis is an improved autopilot

design with animation to visualize the missile target engagement and detailed Kill

Zone & Miss Distance analysis to explore the complexities involved in missile-target

engagement.
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Chapter 2

MISSILE & ACTUATOR DYNAMICS

2.1 Introduction and Overview

In this chapter the six degree-of-freedom nonlinear missile dynamics are described.

Also described are the nonlinear fin actuator dynamics. Section 2.2 describes the ref-

erence frames used to develop the missile dynamics. Section 2.3 describes the effect

of fuel loss. Section 2.4 describes the aerodynamic relationships, i.e. the effects due

to the static and dynamic fluid properties of the atmosphere - accounted for via the

dynamic pressure, Mach number and stability derivatives. Section 2.5 contains the

equations of motion for the missile and Section 2.6 describes the nonlinear actua-

tor dynamics. Finally Section 2.7 summarizes the chapter and concludes the items

explained in this chapter.

2.2 Inertial, Vehicle and Body Frames

In this section three reference frames are described. A perspective, or reference

frames, can be selected so that the dynamics within them can be described by rela-

tively simple equations. The overall system can then be described by simply trans-

forming the equations from one reference frame to another. Reference frames used

in missile dynamics analysis include: (1) Inertial Frame, (2) Vehicle Relative Frame

and (3) the Body Frame. Introducing these reference frames significantly simplifies

the equations of motion for the missile.
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2.2.1 Inertial Frame

Inertial Frame is a stationary coordinate system used to describe the motion of

all objects within it. Throughout the thesis and in the program, the origin of this

frame (0, 0, 0)i 1 is located at sea level directly below the missile initial launch point

as shown in the Figure 2.1. This assumption is valid and typical for short range

missions. It is not valid, for example, in long range Inter-Continental Ballistic Missile

(ICBM) applications [62]. Given the above convention, the missile’s launch (time

zero) center of gravity, denoted by CG0 is located by the inertial point:

Figure 2.1: Local Inertial Frame with missile and target flight paths

Sm
i def

= (Smx, Smy, Smz)
i (2.1)

Its inertial velocity is denoted by

Vm
i def

= (Vmx, Vmy, Vmz)
i (2.2)

The missile’s inertial angular velocity is denoted by

1The superscript i will be used to denote a coordinate with respect to the inertial frame
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Ωm
i def

= (Ωmx,Ωmy,Ωmz)
i (2.3)

Similarly, the target is located by the inertial point:

St
i def

= (Stx, Sty, Stz)
i (2.4)

The target’s inertial velocity is denoted by

Vt
i def

= (Vtx, Vty, Vtz)
i (2.5)

Also shown in Figure 2.1 are typical missile and target flight paths.

2.2.2 Vehicle Frame

Often it is convenient to use the missile’s (time zero) center-of-gravity, CGo as

the origin and this motivates the so-called vehicle frame. This is a nonstationary

coordinate system used to measure the relative distance between the missile and

target, its origin is at the missile’s (time zero) center-of-gravity, CGo. This is a right-

handed coordinate system centered at CGo with axes denoted (Xv, Y v, Zv) which

remain parallel to their inertial counterparts (X i, Y i, Zi). The vehicle frame can be

visualized as shown in Figure 2.2.

Figure 2.2: Visualization of Inertial and Vehicle Frames
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2.2.3 Body Frame

A coordinate system is needed to conveniently define the missiles physical geom-

etry as well as sum all forces and moments acting on the missile. This motivates

the body frame. This is a right-handed coordinate system centered at missile’s (time

zero) center-of-gravity, CGo. Its axes are denoted (Xb, Y b, Zb), where Xb emerges

from the missile’s nose is a forward axis and Y b is a starboard axis. The body frame

can be visualized as shown in Figure 2.3.

Figure 2.3: Visualization of Body Axes and Velocities

Body Axis Velocities.

We define the missile’s body axis velocities (U, V, W) to be the components of

the missile’s inertial velocity Vm
i along the body axes (Xb, Y b, Zb). The body axis

velocities can be visualized as shown in Figure 2.3.

Body Axis Angular Velocities.

We define the missile’s body axis angular velocities (P, Q, R) to be the components

of the missile’s inertial angular velocity Ωm
i along the body axes (Xb, Y b, Zb). These

body axis angular velocities can be visualized as shown in Figure 2.3.

Euler Angles and Missile Attitude.

To precisely specify the orientation(attitude) of the missile in inertial space, it is
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convenient (and convention) to introduce the so-called Euler angles (φ, θ, ψ). To

precisely define these angles, consider the vehicle and body axes systems shown in

Figure 2.4.

Figure 2.4: Visualization of Euler Angles

To define the Euler angles we proceed as follows. Let N1 denote the projection of

Xb onto the XvY v (horizontal) plane 2:

N1
def
= PXvY vX

b (2.6)

where PXvY v denotes a projection operator. The missile pitch angle or pitch

attitude is then defined as the angle from N1 to Xb measured in the vertical N1X
b

plane:

θ
def
= ∠N1X

b (2.7)

2Recall that the XvY v plane is parallel to the XiY i plane. See Figure 2.2.
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The missile yaw angle ψ is defined as the angle from Xv to N1 measured in the

horizontal XvY v plane:

ψ
def
= ∠XvN1 (2.8)

At this point, it would be useful to organize some geometric observations in the

form of lemmas.

Lemma 2.2.1 (Orientation of N1)

1. N1 lies in the ZvXb plane

2. N1 × Xb is parallel to Zv × Xb

Proof: To prove this, it suffices to show that N1 lies in the ZvXb plane. This, how-

ever follows from the following algebraic manipulations.

N1
def
= PXvY vX

b

= -[Xb - PXvY vX
b] + PXvY vX

b + [Xb - PXvY vX
b]

= -PZvX
b + Xb

where PZv(.) denotes the projection of (.) onto the Zv plane.

Now let N2 denote the axis defined by the angular velocity θ̇ via the right-hand

rule. By definition of θ and lemma 2.2.1, we see that N2 is parallel to Zv x Xb. For

convenience we will write

N2
def
=Zv x Xb
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Given this, we make the following observation:

Lemma 2.2.2 (Orientation of N2)

1. N2 lies in the Y bZb plane

Proof: If one lets Zv = α1X
b + α2Y

b + α3Z
b, then the result follows from the

following equality:

N2 = Zv x Xb = [α1X
b + α2Y

b + α3Z
b] x Xb

= α2Y
b x Xb + α3Z

b x Xb

= β1Z
b + β2Y

b

for some scalars β1, β2.

It should be noted that the Y bZb plane, in general, need not be vertical. Given

lemma 2.2.2, one should justifiably define the missile roll angle or roll attitude to be

the angle from N2 to Y b measured in the Y bZb plane:

φ
def
= ∠N2Y

b (2.9)

To relate the Euler rates (φ̇, θ̇, ψ̇) to the body rates (P, Q, R), it is convenient to

define N3 to be the projection of Zv onto the Y bZb plane:

N3
def
= PY bZbZ

v (2.10)

Now we make the following important geometric observations.
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Lemma 2.2.3 (Orientation of N1, N2 and N3)

1. N1 ⊥N2, N2 ⊥ N3, N1 not ⊥ N3

2. ∠ N2Y
b = ∠ N3Z

b = φ

3. N3 lies in the ZvXb plane

4. ∠ ZvN3 = ∠ N1X
b = θ

Proof:

(1) Since

N2 = Zv x Xb = Zv x [PXvY vX
b + Xb - PXvY vX

b]

= Zv x [N1 + PZvX
b]

= Zv x N1

it follows that N1 and N2 are orthogonal. Similarly, since

N2 = Zv x Xb = [PY bZbZ
v + Zv - PY bZbZ

v] x Xb

= [N3 + PXbZv] x Xb

= N3 x Xb

It follows that N2 and N3 are orthogonal. Also, since N1 = PXvY vX
b and N3 =

PY bZbZ
v, it follows that N1 and N3 need not to be orthogonal.

(2) From lemma 2.2.2 N2 lies in the Y bZb plane. N3 lies in this plane by the
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definition. Since N2 and N3 are orthogonal and both lie in the Y bZb plane, it follows

from Figure 2.5 that

∠ N2Y
b = ∠ N3Z

b = φ

Figure 2.5: Visualization of N2 and N3 in Y bZb plane.

(3) Since N3 = PY bZbZ
v = Zv - [Zv - PY bZbZ

v] = Zv - PXbZv

it follows that N3 lies in the ZvXb plane.

(4) Now recall from lemma 2.2.1 that N1 lies in the Zv x Xb plane. Since N3 does

also, it follows from Figure 2.6 that

∠ ZvN3 = ∠ N1X
b = θ
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Figure 2.6: Visualization of N1 and N3 in Xb x Zv plane.

Figure 2.7: Relationship between Euler Angles and Body Rates.

Figure 2.7 which shows how to relate the Euler rates (φ̇, θ̇, ψ̇) to the body rates (P,

Q, R).

From Figure 2.7, one obtains the following coordinate transformation:
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
P

Q

R

 =


1 0 − sin(θ)

0 cos(φ) cos(θ) sin(φ)

0 − sin(φ) cos(θ) cos(φ)



φ̇

θ̇

ψ̇

 (2.11)

from which one obtains:


φ̇

θ̇

ψ̇

 =


1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)



P

Q

R

 (2.12)

2.3 Thrust Profile and Variable-Mass Dynamics

Loss of mass through fuel comsumption influence missile dynamics and must be

accounted for in a realistic manner. Mass loss during flight causes the CG to move

forward with respect to the CG0, because the seeker is located in the forward part of

the missile. The rate of mass loss will also vary with time due to the missile being

modeled with variable thrust. A two-stage thrust profile is used in this simulation. A

large initial thrust is needed to free the missile from the launching aircraft. A second

level of thrust allows the missile to approach the target while remaining within its

designed capabilities. The two thrust levels are as follows:

Th1 = 9250 lbs (2.13)

Th2 = 2140 lbs (2.14)

as shown in the Figure 2.8.
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Figure 2.8: Missile Two-Stage Thrust Profile

The thrust profile is a piecewise linear function of time. All variable-mass effects

are modeled as piece-wise linear time functions. Small time-constant exponential

fucntions are used to smooth the piecewise connected thrust profile at the transition

points. A more precise description of the thrust profile is given in Table 2.1. Tchange

= 0.025 sec, is equal to half the time required to make a thrust transition. It is chosen

to be much smaller than the Th1 time interval, which is equal to 0.6 sec. The time

constant τp (equal to 0.01 sec) is chosen to be at least 5 times smaller than 2Tchange.
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t0 = = 0.000 sec

t1 = Tchange = 0.025 sec

t2 = t1 + Tchange = 0.050 sec

t3 = = 0.600 sec

t4 = t3 + Tchange = 0.625 sec

t5 = t4 + Tchange = 0.650 sec

t6 = = 6.090 sec

t7 = t6 + Tchange = 6.115 sec

t8 = t7 + Tchange = 6.140 sec

Modified Thrust. The caveit of using the above thrust profile is it may lead to

missile being travelling at say Mach 7 at an altitude of 40 kft which is bad. The missile

can’t travel at such higher mach values given its fuel, aerodynamics and design. So

to avoid the above confusion, it is suggested to have the following modified thrust

profile, which is obtained through multiplying scaled air density component (ρ) in old

thrust profile. Air gets thinner as we go up and if that is modelled along with this

thrust profile as below, then missile will always stay within its specified mach value.

This change is discussed in [6] but not present in simulation environments done by

[2] & [5]. ρsl is a constant (air density at sea level) and defined as 0.0024 slug
ft3

.

Thrustnew = Thi
ρ

ρsl
(2.15)

where i = 1,2 respectively. By assumption, the time-derivative of the missile’s

mass and moments of inertia are directly proportional to the missile impulse time-

derivative, where impulse is given as the time integral of thrust:
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Time Interval Thrust Value when τp = 0.010 sec

First Transition: to Th1
Th1

1+e−(t−t1)/τp

Th1 9250 lbs

Transition: Th1 to Th2 Th1 + (Th2−Th1)

1+e−(t−t4)/τp

Th2 2140 lbs

Transition: Th2 to end Th2 - Th2
1+e−(t−t7)/τp

Table 2.1: Thrust Profile Equations

Impulse
def
=

∫ t

to

Thrustdt+ Impulse(0) ≈ Th1(t3 − t2) + Th2(t6 − t5) (2.16)

where,

t0
def
= 0 and Impulse(0)

def
= 0

First we define three impulse-fraction constants:

ImpFrac1
def
=

Th1

Impulse
(2.17)

ImpFrac2
def
=

Th2

Impulse
(2.18)

ImpFrac3
def
= (ImpFrac1 − ImpFrac2)(t7 − t0) (2.19)

These constants allow the impulse to be re-described as a normalized linear func-

tion of time:
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ImpNorm =



0 : t < t2

ImpFrac1 t : t2 < t < t3

ImpFrac2 t+ ImpFrac3 : t5 < t < t6

1 : t6 < t

(2.20)

Missile mass can now be represented by a time function:

m(t) = m0 − ImpNorm(t) dm (2.21)

where m0 = 5.75 slug is the missile’s time-zero mass and dm = 2.2689 slug is

defined so where, [ImpNorm(t8 - t0) dm] is the total mass lost from t0 to t8. The

missile’s principal moments of inertia are similarly defined:

Ixx(t) = Ixxo − ImpNorm(t) dIxx (2.22)

Iyy(t) = Iyyo − ImpNorm(t) dIyy (2.23)

Izz(t) = Izzo − ImpNorm(t) dIzz (2.24)

where time-zero moments and impulse change in moments of inertia are defined

in Table 2.2.

The CG is located along the body frame positive X-axis using:

XCG(t) = ImpNorm(t) dCG (2.25)

Figure 2.9 shows the orientation of the CG to the missile body frame.
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Time-Zero Missile Inertial

Moment (slug-ft2)

Impulse Change in Moment

of Inertia (slug-ft2)

Ixxo = 0.34 dIxx = 0.11

Iyyo = 34.1 dIyy = 6.94

Izzo = 34.1 dIzz = 6.90

Table 2.2: Missile’s Time-Zero Mass and Moment of Inertia

Figure 2.9: Visualization of CG0 and Vb

Ixx, Iyy, Izz, XCG, their derivatives and mass denoted by m(t), are then included

in the derivation of the missile dynamic equations. The time-derivative of Mass is

accounted for in the missile thrust term.

Maximum Missile Acceleration Calculation. By Newton’s law, F = ma, we

understand that the acceleration varies inversely with respect to the mass. Thus

missile will reach its maximum acceleration when maximum fuel mass is lost during

its flight. Missile acceleration is measured in terms of G-force here. When the missile

fligh time t > t6, the ImpNorm would be 1 and missile will have the least mass. Going

by the Equation 2.21, we calculate the maximum mass lost as follows.
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MaximumMassLost = ImpNorm(t) dm

= 1 ∗ 2.2689

= 2.2689 slugs

Thus the remaining missile mass is given by,

RemainingMass = m0 −MaximumMassLost

= 5.7500− 2.2689

= 3.4811 slugs = 50.8028 kg = 498.205N

Maximum Thrust is given as = 9250 lbs = 4195.729 kg = 41146.04591 N. The “g”

force is calculated as follows,

Gforce =
Thrust

Weight

=
Thrust inN

mass in kg ∗ 9.8ms−2

=
Thrust inN

Weight inN

Thus the maximum G force will occur when the thrust is max and weight is

minimum.

MaximumGforce =
Maximum Thrust

Minimum Weight

=
41146.04591N

495.205N

= 82.58

Thus the BTT missile in our considered can maximum pull up to 82.58 g’s with

its capabilities while trying to intercept a target. 82.58 g is really a considerable

acceleration advantage over the target which is limited to maximum ± 9g, which a

human pilot can endure.
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2.4 Missile Aerodynamics

During the missile’s flight through the atmosphere, it will experience aerodynamic

forces, Fw and moments Gw [49]. The amount of lift generated and drag that must

be overcome are greatly influenced by the missile’s orientation with respect to its

velocity vector, speed and the local dynamic air pressure.

If one defines the missile’s body frame inertial speed, Vb as:

Vb
def
=
√

(U2 + V 2 +W 2) (2.26)

then the dynamic pressure Qdp is a function of the local air density ρ and is given by:

Qdp = 0.5ρV 2
b (2.27)

A critical parameter in this work is Mach Number. Mach number is defined as follows:

Mach
def
=

Vb
SOS

(2.28)

where SOS is the local speed-of-sound.

For missile velocity Vb less than the local SOS, the missile motion produces com-

pression waves which radiate away from the missile in all directions. The wave motion

in advance of the missile starts the local air molecules in motion, in a manner such

that they flow smoothly out of the path of the missile. This is known as the sub-sonic

flight and the missile lift, drag and sideforce characteristics depend on the smooth flow

of the atmosphere over the surface area of the missile. For missile velocity Vb greater

than the local SOS, the air molecules recieve no advance warning of the approaching

missile and are forced rapidly out of the way at speeds greater than the local SOS,
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creating a shock wave [57]. This is known as supersonic flight. The lift, drag and

sideforce properties of the missile are significantly changed from those properties at

sub-sonic flight.

SOS and ρ are in turn functions of the missile’s inertial altitude Smz
i and are

modeled using equations fitted to a set of tabulated data [57], [58]. The tabulated data

contains results of extensive wind-tunnel tests. SOS and ρ decrease with increasing

altitude. More precisely, SOS varies as temperature and ρ varies as temperature

(below 36088 ft) or altitude (above 36088 ft, geopotential height).

2.4.1 Stability and Control Derivatives

In order to express the external body frame forces (Fx, Fy, Fz) and body frame

moments (L, M, N) in terms of the aerodynamic variables (α, β), aerodynamic pa-

rameter (Mach) and the controls (δp, δq, δr), it is convention to introduce the stability

derivatives in Table 2.3 and the control derivatives in Table 2.4. These coefficients

represent the partial derivatives of body frame forces (Fx, Fy, Fz) with respect to

body linear velocities (U, V, W) and body frame moments (L, M, N) with respect to

body frame angular velocities (P, Q, R). Stability derivatives are interpolated from

aerodynamic coefficient arrays created using empirical values measured during the ac-

tual missile wind-tunnel tests. Tables are used becuase of the complex dependence on

Mach number, angle of attack and sideslip angles. This simulation still uses 15 aero-

dynamic coefficients which are interpolated using Mach, α, β&δq. Their parameter

dependence is indicated in Table 2.3 and Table 2.4.
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Aero Coefficients Quantifies Depends on

CD Drag from Pitch Fin Deflection δq, Mach-1, α-1

CDT Base Drag due to Mach Mach-2

CLβ Roll Moment from Sideslip Mach-1, α-1

CLP Roll Damping Moment - Pitch rate Mach-1, α-3

CMα Pitch Moment from Angle of Attack Mach-1, α-4

CMq Pitch Moment from Pitch Fin Deflection Mach-2, α-3

CNα Lift due to Mach Mach-1

CNβ Yaw Moment from Sideslip Mach-1, α-1

CNR Yaw Damping Moment - Yaw Rate Mach-2, β-2

CYβ Side Force from Sideslip Mach-1, α-1

Table 2.3: Stability Derivatives and Parameter Dependence

Aero Coefficients Quantifies Depends on

CLδp Roll Moment from Roll Fin Deflection Mach-1, α-1

CMδq
Pitch Moment from Pitch Fin Deflection Mach-1, α-2

CNδq Lift from Pitch Fin Deflection Mach-1, α-2

CNδr Yaw Moment from Yaw Fin Deflection Mach-1, β-1

CYδr Side Force from Yaw Fin Deflection Mach-1, β-1

Table 2.4: Control Derivatives and Parameter Dependence

Polynomial Fit Data Models and Dynamic Implications

Stability & Control derivatives were studied for their complex dependencies on flight

parameters. Polynomial fitting of these Stability & Control derivatives will cut down
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the computation time of simulation by several times as this will avoid matrix parsing

of aerodynamic look up tables using interpolation.
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Figure 2.10: CD - Drag from Pitch Fin Deflection - depends on δq, Mach-1, α-1

1 2 3 4 5 6 7 8 9
0.04

0.06

0.08

0.1

0.12

0.14

0.16
CDT

Mach 2

C
D

T
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Figure 2.21: CNδr - Yaw Moment from Yaw Fin Deflection - depends on Mach-1, β-1
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Figure 2.22: CNR - Yaw Damping Moment - Yaw Rate - depends on Mach-2, β-2
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Figure 2.23: CYβ - Side Force from Sideslip - depends on Mach-1, α-1
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Figure 2.24: CYδr - Side Force from Yaw Fin Deflection - depends on Mach-1, β-1
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Figure 2.25: Scheduled Gain
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2.4.2 Aerodynamic (Wind) Frame

The aerodynamic frame is defined so as to relate the missile body frame veloc-

ity and orientation to the external aerodynamic forces and moments. The stability

and control derivatives are dependent on missile body rate information. The body

frame linear velocities are transformed into the aerodynamic frame by the following

equations.

Figure 2.26: Aerodynamic Force, Body Velocity and Aerodynamic Angles

Figure 2.26 shows the aerodynamic force Fw = (X, Y, Z)w, body velocity Vm and
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aerodynamic angles - α, β defined below. Velocity of the missile in wind frame is

given by:

Vm
w = (Vb, 0, 0)w (2.29)

Figure 2.27: Visualization of Sideslip Angle, β

Figure 2.28: Visualization of Angle of Attack, α

The orientation of the wind frame will now be discussed. The wind frame has its

origin at the missile center of gravity CG0, with Xw in the plane defined by Xw and

Y b as shown in the Figure 2.28. Zw is defined to be orthogonal to ~U + ~W in the

XbZb plane as shown in Figure 2.27. We now define two key aerodynamic variables:

(1) Angle of Attack α and (2) Sideslip Angle β. These quantities are defined in terms

of the body axis velocities (U, V, W) as follows. The Angle of Attack, denoted by α

is defined as shown in Figure 2.12 as the angle from Zb to Zw, i.e.
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α
def
= ∠ZbZw (2.30)

From figure 2.28, it also follows that

α
def
= tan−1W

U
(2.31)

The Sideslip Angle, denoted by β is defined as the angle from ~U + ~W to ~U + ~V

+ ~W , measured in the plane formed by ~U + ~W and Y b: The Sideslip Angle, denoted

by β is defined as shown in Figure 2.27 as the angle from Y b to Y w, i.e.

β
def
= ∠Y bY w (2.32)

From Figure 2.27, it also follows that

β
def
= tan−1 V√

(U2 +W 2)
(2.33)

2.4.3 Force and Moment Coefficients

Stability derivatives are multiplied with dynamic parameter values to form body

frame force coefficients and body frame coefficients. Figure 2.29 [59] shows the aero-

dynamic forces (Fx, Fy, Fz), moments (L, M, N), body linear velocities (U, V, W)

and body angular velocities (P, Q, R). Their notation is defined in the Table 2.5.
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Direction/Rotation Velocity Forces & Moments Distances

Forward U X = Fx x

Side V Y = Fy y

Vertical W Z = Fz z

Roll P L

Pitch Q M

Yaw R N

Table 2.5: Body Frame Force and Moment Notation

Figure 2.29: Body Frame Axis System and Notation
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The symbols δp, δq, δr are equivalent to aileron, elevator and rudder deflections

for an aircraft. They are related to the actual fin deflections via an Integrated Logic

for Air-to-Air Technology (ILAAT) demixer [48].

The drag, side force and lift coefficients are:

CX = CD + CDT (2.34)

CY = CYββ + CYδr δr (2.35)

CZ = CNαα + CNδq δq (2.36)

and the roll, pitch and yaw moment coefficients are

CL = CLδpδp + CLPPL2V + CLββ (2.37)

CM = CMδq
δq + CMQ

QL2V + CMαα (2.38)

CN = CNδr δr + CNRRL2V + CNββ (2.39)

where

L2V
def
=
Lref

2
Vb (2.40)

Lref = 0.625 (ft) is an effective reference missile length used to describe moments

about CG. CMα determines whether the airframe is statically stable [62]. A missile

is statically stable if it returns to its equilibrium point after encountering a small

disturbance [58].

48



www.manaraa.com

2.4.4 Aerodynamic Forces (Fx, Fy, Fz) and Moments (L, M, N)

The aerodynamic force coefficients are converted into forces by multiplication with

the local dynamic pressure, missile effective cross sectional area Sref = 0.307 (ft2)

and missile mass denoted by m:

Fx = CXQdpSrefm (2.41)

Fy = CYQdpSrefm (2.42)

Fz = CZQdpSrefm (2.43)

The moment coefficients are similarly converted into aerodynamic moments about

the body frame XYZ axes by multiplying with Qdp, Sref and Lref :

L = CLQdpSrefLref (2.44)

M = CMQdpSrefLref (2.45)

N = CNQdpSrefLref (2.46)

2.4.5 Gravitational Forces and Moments

In this missile simulation program, the gravitational force of attraction is mod-

eled as an external force (Fgx , Fgy , Fgz)
b acting at the missile instantaneous center-

of-gravity CG. For a CG displaced from the body frame CG0, the external force

(Fgx , Fgy , Fgz)
b causes an external moment (Ggx , Ggy , Ggz)

b about the CG0.

Gravitational Acceleration, g

The acceleration g of the Earth’s gravity decreases with altitude as a function of 1
R2 ,

R
def
= radial distance from the center of the Earth and can be written as:

49



www.manaraa.com

g = g0

√
R0

R0 + hi
(2.47)

where

hi
def
= the inertial altitude of missile = (Sz)

i

R0
def
= sea-level radius of Earth = 20,903,264 ft

g0
def
= sea-level value for gravity = 32.174 ft

sec2

Gravitational Acceleration

For the missile-target engagement, g is modeled as an inertial acceleration (Agx , Agy , Agz)
i

= [0, 0, g]i and when transformed into the body frame is denoted as (Agx , Agy , Agz)
b.

Gravitational Force and Moment

The external gravitational force (Fgx , Fgy , Fgz)
b acting on the missile CG is given by:

(Fgx , Fgy , Fgz)
b = m(Agx , Agy , Agz)

b (2.48)

and therefore the components are

Fgx = mAgx (2.49)

Fgy = mAgy (2.50)

Fgz = mAgz (2.51)

An external gravitational moment, (Ggx , Ggy , Ggz)
b results because the force (Fgx , Fgy , Fgz)

b

is applied at the missile CG, which is displaced from body frame origin by a distance

(Scx , Scy , Scz)
b. The moment equation is given by:
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(Ggx , Ggy , Ggz)
b = (Scx , Scy , Scz)

b × (Fgx , Fgy , Fgz)
b (2.52)

The CG motion is confined along the body frame X-axis for this model, the last

equation expands as:

Ggx = 0 (2.53)

Ggy = −ScxFgz (2.54)

Ggz = ScxFgy (2.55)

2.5 Equations of Motion for the Missile

A complete set of 6DOF nonlinear equations can be described by summing all

external forces and moments, (external forces being defined as the aerodynamic and

gravitational forces and moments), acting on the missile and setting them equal to

the forces and moments due to the missile inertial acceleration. Inertial and external

components are indicated by i and e subscripts respectively.

Translational Dynamics

Inertial accelerations expresses in body frame (X, Y, Z)b are:

Aix = U̇ +QW −RV + ẌCG −XCG(Q2 +R2) (2.56)

Aiy = V̇ +RU −RW + 2RẌCG −XCG(PQ+ Ṙ) (2.57)

Aiz = Ẇ + PV −QU + 2QẌCG −XCG(PR− Q̇) (2.58)

where XCG(t) is given by the Equation (2.25).

The second derivative of XCG is retained to model effects during rocket thrust

transients. XCG is defined as the distance the instantaneous missile CG is displaced
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from the body frame origin CG0, XCG = Scx .

These inertial accelerations (Aix, Aiy, Aiz) are set equal to the accelerations caused

by external forces (Aex, Aey, Aez), which include: (1) the aerodynamic forces, (2)

rocket thrust and (3) gravity transformed into the body frame:

Aex =
Fx

Mass
+ Fgx

b +
Thrust

Mass
(2.59)

Aey =
Fy

Mass
+ Fgy

b (2.60)

Aez =
Fz

Mass
+ Fgz

b (2.61)

where (Fx, Fy, Fz) are specified by equations (2.41) - (2.43), thrust is specified by

equations (2.13) - (2.14), m is specified by the equation (2.21) and (Fgx , Fgy , Fgz)
b are

given in equations (2.49) - (2.51).

Rotational Dynamics

Inertial moments about the body frame XYZ axes are described by:

Li = Ṗ Ixx + P İxx +QR(Izz − Iyy) (2.62)

Mi = Q̇Iyy +Qİyy +RP (Ixx − Izz) (2.63)

Ni = ṘIzz +Rİzz + PQ(Iyy − Ixx) (2.64)

where (Ixx, Iyy, Izz) are specified by equations (2.22) - (2.24).

These inertial moments (Li,Mi, Ni) are set equal to the sum of external moments

(Le,Me, Ne) acting on the missile, which include: (1) aerodynamic moments and (2)

the two moments due to gravity:
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Le = L (2.65)

Me = M −Ggz
b (2.66)

Ne = N +Ggy
b (2.67)

where (L, M, N) are specified by equations (2.44) - (2.46).

2.6 Actuator Dynamics

The missile under study is a tail controlled missile. Missile control is achieved

by appropriately coordinating four fins. Fin commands (F1c, F2c, F3c, F4c) are gener-

ated by the autopilot, to be discussed in Chapter 6. The fin commands drive four

nonlinear actuator servo mechanisms, whose outputs are the actual fin deflections

(F1, F2, F3, F4). each actuator is modelled as shown in Figure 2.30.

Figure 2.30: Model for Nonlinear Fin Actuators / Servomechanisms

Neglecting nonlinearities, each servo has a transfer function from Fic to Fi given

by:

Hi(s) =

[
ωf

2

s2 + 2ζfωfs+ ωf 2

]
(2.68)

where, i = 1, 2, 3, 4 and

ζf
def
= the damping ratio of the fin actuator and is equal to 0.3,
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ωf
def
= the servo undamped natural frequency and is equal to 195.0077 rad

sec

Fin deflections are limited in position to

Fmax = ±20deg (2.69)

and in rate to

˙Fmax = ±600
deg

sec
(2.70)

Also in the Logic block, the difference between the commanded fin deflection angle

and the actual fin deflection angle is set to zero if it is less than 0.05 degrees.

2.7 Summary and Conclusions

In this chapter,the six degree-of-freedom nonlinear missile dynamics were de-

scribed. The three reference frames, (1) Inertial frame, (2) Vehicle frame and (3)

Body frame used to develop the equations of motion were introduced. The loss of

mass through fuel consumption was mathematically described, because this mass loss

will influence missile dynamics and must be accounted for in a realistic manner. The

aerodynamic relationships were discussed. The gravitational model used in this sim-

ulation was described. The equations of motion for the missile were presented. The

missile’s fin actuator dynamics were described in the last section.
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Chapter 3

LINEARIZED MISSILE MODEL ANALYSIS

3.1 Introduction and Overview

The governing nonlinear missile equations of motion were presented in Chapter

2. To use modern multivariable control theory or classical control theory to design

autopilots requires that the missile equations of motion be in a linear time-invariant

state-space form. Thus, it is necessary to linearize the nonlinear equations about

trimmed flight conditions, or equilibrium points, to yield linear equations that accu-

rately describe the missile’s dynamic behavior. This appendix presents the derivation

of the governing linear equations of motion, often called perturbation equations, for

several trimmed flight conditions. In addition, the eigenvalues of the linear equa-

tions motion about selected equilibrium points are presented and the most significant

factors that influence these modes are discussed.

The chapter is organized as follows. Section 3.2 presents the perturbation tech-

nique used to linearize the missile 6DOF equations and generate linear time-invariant

state space systems which can be controlled using modern multivariable control theory

or classical control theory. Section 3.3 throws light on selection of equilibrium points

while linearizing the missile dynamics. Section 3.4 discusses the time scaling used

to scale the linear system. Following the linear model generation, section 3.5 talks

about decoupled longitudinal and lateral model and particular emphasis has been

given on explaining the nonminimum phase and unstable pole dynamic behaviour in

the decoupled models. After that section 3.6 discusses the static analysis of missile

performed on trim elevator deflection. The causes for missile fin deflection saturation
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is explained in detail. Finally section 3.7 concludes the chapter.

3.2 Linear Equations of Motion

As discussed in the previous chapter, the nonlinear governing equations can be

put into state space form described by the following compact notation:

ẋ = f(t, x, u) (3.1)

By definition, (x∗, u∗) 1 is an equilibrium point of Equation 3.1 for all t ≥ 0.

f(t, x∗, u∗) = 0 (3.2)

where x∗ and u∗ are the state and input (control) vectors respectively.

In the linearization of the nonlinear EOM we will make use of the Taylor series

expansion of Equation 3.1. Taking the Taylor series expansion of Equation 3.1 and

neglecting all 2nd order and higher terms yields:

ẋ = f(t, x∗, u∗) +
∂f

∂x

∣∣∣∣
(x∗,u∗)

(x− x∗) +
∂f

∂u

∣∣∣∣
(x∗,u∗)

(u− u∗) (3.3)

We can express the states and the inputs as a linear combination of their respective

equilibrium values and a perturbation value that represents their change due to a

disturbance from their equilibrium values. Thus, we can write

ẋ = ẋ∗ + ∆ẋ = f(t, x∗, u∗) + ∆ẋ = ∆ẋ

x = x∗ + ∆x

u = u∗ + ∆u

(3.4)

1Throughout this chapter, all variables with supercript * correspond to their respective equilib-

rium values
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Using Equation 3.4, we can rewrite Equation 3.3 as follows:

∆ẋ =
∂f

∂x

∣∣∣∣
(x∗,u∗)

∆x+
∂f

∂u

∣∣∣∣
(x∗,u∗)

∆u (3.5)

Equation 3.5 describes the linear dynamic behavior of a nonlinear system about an

equilibrium point under the assumption that the perturbations are “small”. Similarly,

the nonlinear output equations (as of yet, unspecified) can be linearized using a Taylor

series expansion and retaining only the first order terms as follows:

∆y =
∂g

∂x

∣∣∣∣
(x∗,u∗)

∆x+
∂g

∂u

∣∣∣∣
(x∗,u∗)

∆u (3.6)

Employing the above linearization procedure we can write the linear state-space

perturbation equations of the nonlinear equations of motion presented in Equations

2.56 - 2.58 and 2.62 - 2.62. The linear time-invariant state-space equations are given

as follows:

∆ẋ = A∆x+B∆u

∆y = C∆x+D∆u

(3.7)

where

A =
∂f

∂x

∣∣∣∣
(x∗,u∗)

, B =
∂f

∂u

∣∣∣∣
(x∗,u∗)

C =
∂g

∂x

∣∣∣∣
(x∗,u∗)

, D =
∂g

∂u

∣∣∣∣
(x∗,u∗)

(3.8)

Before proceeding with the linearization of the nonlinear state and output equa-

tions using small perturbation theory, we will make the following simplifying assump-

tions.
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Assumptions/Idealizations/Approximations used in Linearization of the

EOM:

1. Changes in the local air density, ρ, are “small” relative to perturbations of the

other variables about equilibrium points of interest. This assumption simplifies

the expansion of the perturbed dynamic pressure, ∆Qdp, into being only depen-

dent on the missile’s velocity perturbation, ∆Vb. Thus, ∆ Qdp = ( ρ∗Vb
∗) ∆Vb.

This assumption is valid along as long as changes in the missiles altitude are

“small” about equilibrium points.

2. The missile’s mass properties m, XCG, Ixx, Iyy and Izz are dependent only upon

time t, because the propulsive thrust is modeled as time scheduled thrust profile

(e.g., versus a throttle-controlled thrust, δthrottle). The perturbations in these

parameters can be effectively modeled as time dependent disturbances acting on

each of the six EOM. Thus, in the linearization procedure that follows, we will

ignore their time variation and the set their respective time derivatives to zero,

and effectively treat them as constants. However, since the constant part of the

time varying parameters does affect the characteristic modes of the missile, we

will evaluate the linear EOM at different “snap-shots” in flight time with the

corresponding values of the mass properties at this instant in flight time. We

will assume, for simplicity only, that XCG = 0, at all steady-flight conditions

(equilibrium points).

3. Fin actuator dynamics will be ignored in the linearized state-space EOM. This

is usually a valid assumption because the bandwidths of servo actuators are

usually specified (designed) to be higher than that of the expected controller

bandwidth such that the dominant dynamics are that of the plant and not that

of the actuators.
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The nonlinear BTT missile state equations from Chapter 2 are given below for

convenience (where the fin actuator dynamics have been neglected under idealization

(3) given above):

U̇ =
X

m
−QW +RV +XCG(Q2 +R2) (3.9)

V̇ =
Y

m
−RU + PW − 2RẌCG +XCG(PQ+ Ṙ) (3.10)

Ẇ =
Z

m
− PV +QU − 2QẌCG +XCG(PR− Q̇) (3.11)

Ṗ =
L

Ixx
− P İxx

Ixx
− QR(Izz − Iyy)

Ixx
(3.12)

Q̇ =
M

Iyy
− Qİyy

Iyy
− RP (Ixx − Izz)

Iyy
(3.13)

Ṙ =
N

Izz
− Rİzz

Izz
− PQ(Iyy − Ixx)

Izz
(3.14)

where

X = FXaero + FXg + TX

Y = FYaero + FYg

Z = FZaero + FZg

L = Laero

M = Maero +Mg

N = Naero +Ng

(3.15)
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and

FXaero = QdpSrefCX = QdpSref (CD + CDT )

FYaero = QdpSrefCY = QdpSref (CYββ + CYδr δr)

FZaero = QdpSrefCZ = QdpSref (CNαα + CNδq δq)

Laero = QdpSrefLrefCL = QdpSrefLref (CLδpδp + CLp(Lref/2Vb)P + CLββ)

Maero = QdpSrefLrefCM = QdpSrefLref (CMδq
δq + CMq(Lref/2Vb)Q+ CMαα)

Naero = QdpSrefLrefCN = QdpSrefLref (CNδr δr + CNr(Lref/2Vb)R + CNββ)

(3.16)

and

FXg = −mg sin(θ)

FYg = mg cos(θ) sin(φ)

FZg = mg cos(θ) cos(φ)

Lg = 0

Mg = −XCGmg cos(θ) cos(φ)

Ng = XCGmg cos(θ) sin(φ)

(3.17)

The above equations can be put into the following compact notation, where the

output equations are dependent on the available measurements and the variables to

be controlled.

State equations:

ẋ = f(t, x, u) (3.18)

Output equations:

y = g(t, x, u) (3.19)

Under assumption (2), Equations 3.9 - 3.14 reduce to:

U̇ =
X

m
−QW +RV (3.20)
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V̇ =
Y

m
−RU + PW (3.21)

Ẇ =
Z

m
− PV +QU (3.22)

Ṗ =
L

Ixx
− QR(Izz − Iyy)

Ixx
(3.23)

Q̇ =
M

Iyy
− RP (Ixx − Izz)

Iyy
(3.24)

Ṙ =
N

Izz
− PQ(Iyy − Ixx)

Izz
(3.25)

For the linearized state-space system we will make the following steady flight condition

assumptions.

Assumptions about Steady Flight Conditions:

1. The steady trimmed flight condition is one of uniform translational motion, i.e.,

where the equilibrium angular rates are zero. Thus P* = Q* = R* = 0, where

all starred, “*”, variables will indicate equilibrium values of the variables.

2. The sideslip angle, β, is taken to be zero. This is a valid assumption since one of

the requirements of the BTT missile autopilot is to minimize the sideslip angle

during flight. Thus, V* = 0.

3. The bank angle, φ and the yaw angle, ψ, are taken to be zero.

4. The steady, or equilibrium, thrust level will taken two be that of the second

stage (2140 lbf) but corrected for altitude for all trimmed flight conditions. We

assume this level of thrust because the missile probably will spend most of its

flight time at this stage (the first stage being relatively short in duration). Also,

we will assume that the level of thrust is constant even in perturbed flight about

equilibrium points.
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5. The missile’s mass properties change with flight time, as discussed in Chapter

2; However, for simplicity we assume that they are constant about trimmed

flight conditions. The eigenvalues of the linear EOM will be evaluated about

the same trim conditions but at different flight times to gage the affects of the

flight-time dependent mass properties.

∆U̇ =
∆X

m∗
−W ∗∆Q (3.26)

∆V̇ =
∆Y

m∗
− U∗∆R +W ∗∆P (3.27)

∆Ẇ =
∆Z

m∗
− U∗∆Q (3.28)

∆Ṗ =
∆L

I∗xx
(3.29)

∆Q̇ =
∆M

I∗yy
(3.30)

∆Ṙ =
∆N

I∗zz
(3.31)

Under the above steady flight condition assumptions, we can write the perturbation

equations for the nonlinear Equations 3.20 - 3.25: where all starred, “*”, variables

indicate equilibrium values and where force and moment perturbations are

∆X = ∆Xaero + ∆FXg + ∆TX

∆Y = ∆Yaero + ∆FYg

∆Z = ∆Zaero + ∆FZg

∆L = ∆Laero

∆M = ∆Maero + ∆Mg

∆N = ∆Naero + ∆Ng

(3.32)

However, under assumptions (2) and (iv), we have
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∆TX = ∆Mg = ∆Ng = 0

The gravitational force perturbations are as follows:

∆FXg = −mg cos(θ∗)∆θ

∆FYg = mg cos(θ∗) cos(φ∗)∆φ−mg sin(θ∗) sin(φ∗)∆θ

∆FZg = −mg cos(θ∗) sin(φ∗)∆φ−mg sin(θ∗) cos(φ∗)∆θ

(3.33)

However, under flight condition assumption 3, i.e., φ∗ = 0, Equations 3.33 reduce to

∆FXg = −mg cos(θ∗)∆θ

∆FYg = mg cos(θ∗)∆φ

∆FZg = −mg sin(θ∗)∆θ

(3.34)

The form of the aerodynamic forces and moments in Equations 3.16 (i.e., the stability

derivative representation) gives us valuable information on their dependencies on the

state and control variables. For example, lets consider the Taylor series expansion of

the aerodynamic pitch moment, M:

∆M = Qdp
∗SrefLref∆CM + ρ∗Vb

∗SrefLrefCM
∗∆Vb

NOTE: CM
∗ and the other trimmed aerodynamic moment coefficients are not nec-

essarily zero because the missile’s c.g. is not located at body fixed-frame (except at t

= 0 because the body axis is fixed to the time-zero location of the c.g. and where we

assume that all of the aerodynamic data is referenced from). However, under ideal-

ization (2), we will assume XCG is zero, and thus, all trimmed moment aerodynamic

coefficients are zero. This will be more apparent in Section 3.3, where we discuss the

trim, or equilibrium, conditions of the missile.

From Equations 3.16, we can immediately see that
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∆CM = CMδq

∗∆δq + CMq

∗(Lref/2Vb)∆Q+ CMα

∗∆α

which is of the form,

∆CM =

(
∂CM
∂δq

)∗
∆δq +

(
∂CM

∂(QLref/2Vb)

)∗
(Lref/2Vb)∆Q+

(
∂CM
∂α

)∗
∆α (3.35)

In the work that follows, we will make use of the stability derivatives in the Taylor

series expansions of CX , CY , CZ , CL, CM , and CN . The stability derivatives, as dis-

cussed in Chapter 2, already tell us the important states and controls that they depend

on and give their respective partial derivatives with respect to the states and controls.

For later work, we will need the Taylor series expansions of the aerodynamic variables

α and β, thus, we will give them here (we will eventually write the linearized EOM

with respect to the principal axis, which is sometimes used the for high speed missiles

where inertial effects are important [53] and not the commonly used stability axis):

∆α = −sin(α∗)

Vb
∗ ∆U +

cos(α∗)

Vb
∗ ∆W (3.36)

and under steady flight condition assumption (2), i.e. V ∗ = 0, we have

∆β =

(
1

Vb
∗

)
∆V (3.37)

Also we can write the pertubation of the resultant missile velocity (for V ∗ = 0), as:

∆β =

(
U∗

Vb
∗

)
∆U +

(
W ∗

Vb
∗

)
∆W = (α∗)∆U + sin(α∗)∆W (3.38)

For notational conveniences, we will define the following compact forms of the partial

derivatives of forces and moments:
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Partial Derivatives of Forces:

Xu
∗ =

1

m∗

(
∂X

∂U

)∗
Zw
∗ =

1

m∗

(
∂Z

∂W

)∗
and etc...

Partial Derivatives of Moments:

Mw
∗ =

1

Iyy
∗

(
∂M

∂W

)∗
Nv
∗ =

1

Izz
∗

(
∂N

∂V

)∗
and etc...

By inspection of the right hand sides of Equations 3.16, i.e., the stability derivative

representation of the aerodynamic forces and moments, and making use of Equations

3.36-3.38, we can write the following perturbation equations:

X-component of Translational Acceleration:

∆U̇ = Xu
∗∆U +Xw

∗∆W +Xq
∗∆Q− (g∗ cos θ∗)∆θ (3.39)

where

Xu
∗ =

(
Qdp

∗Sref
m∗Vb

∗

)
2CX

∗ cosα∗

Xw
∗ =

(
Qdp

∗Sref
m∗Vb

∗

)
2CX

∗ sinα∗
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Xq
∗ = −W ∗

Y-component of Translational Acceleration:

∆V̇ = Yu
∗∆U+Yv

∗∆V +Yw
∗∆W +Yp

∗∆P +Yr
∗∆R+Yδr

∗∆δr+(g∗cosθ∗)∆φ (3.40)

where

Yu
∗ =

(
Qdp

∗Sref
m∗Vb

∗

)
2CY

∗ cosα∗

Yv
∗ =

(
Qdp

∗Sref
m∗Vb

∗

)
CNβ

∗

Yw
∗ =

(
Qdp

∗Sref
m∗Vb

∗

)
2CY

∗ sinα∗

Yp
∗ = W ∗

Yr
∗ = −U∗

Yδr
∗ =

(
Qdp

∗Sref
m∗Vb

∗

)
CYδr

∗

Z-component of Translational Acceleration:

∆Ẇ = Zu
∗∆U + Zw

∗∆W + Zq
∗∆Q+ Zδq

∗∆δq − (g∗ sin θ∗)∆θ (3.41)

where

Zu
∗ = Qdp

∗Sref

(
2CZ

∗ cosα∗ − CNα∗ sinα∗

m∗Vb
∗

)
Zw
∗ = Qdp

∗Sref

(
2CZ

∗ sinα∗ + CNα
∗ cosα∗

m∗Vb
∗

)
Zq
∗ = U∗

Zδq
∗ =

(
Qdp

∗Sref
m∗

)
CNδq

∗
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X-component of Angular Acceleration:

∆Ṗ = Lp
∗∆P + Lv

∗∆V + Lδp
∗∆δp (3.42)

where

Lp
∗ =

(
Qdp

∗SrefLref (Lref/2Vb
∗)

Ixx
∗

)
CLp

∗

Lv
∗ =

(
Qdp

∗SrefLref
Ixx
∗Vb
∗

)
CLβ

∗

Lδp
∗ =

(
Qdp

∗SrefLref
Ixx
∗

)
CLδp

∗

and where the fact that during trimmed flight (for XCG = 0), CL
∗ = 0 has been used

in the stability derivatives of Lu and Lw, i.e. they are equal to zero and not included.

Y-component of Angular Acceleration:

∆Q̇ = Mq
∗∆Q+Mu

∗∆U +Mw
∗∆W +Mδq

∗∆δq (3.43)

where

Mq
∗ =

(
Qdp

∗SrefLref (Lref/2Vb
∗)

Iyy
∗

)
CMq

∗

Mu
∗ =

(
Qdp

∗SrefLref
Iyy
∗Vb
∗

)
CMα

∗ sinα∗

Mw
∗ =

(
Qdp

∗SrefLref
Iyy
∗Vb
∗

)
CMα

∗ cosα∗

Mδq
∗ =

(
Qdp

∗SrefLref
Iyy
∗

)
CMδq

∗

and where the fact that during trimmed flight (for XCG = 0), CM
∗ = 0 has been

used in the stability derivatives of Mu and Mw, i.e. they are equal to zero and not

included.
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Z-component of Angular Acceleration:

∆Ṙ = Nr
∗∆R +Nv

∗∆V +Nδr
∗∆δr (3.44)

where

Nr
∗ =

(
Qdp

∗SrefLref (Lref/2Vb
∗)

Izz
∗

)
CNr

∗

Nv
∗ =

(
Qdp

∗SrefLref
Izz
∗Vb
∗

)
CNβ

∗

Nδr
∗ =

(
Qdp

∗SrefLref
Izz
∗

)
CNδr

∗

and where the fact that during trimmed flight (for XCG = 0), CN
∗ = 0 has been used

in the stability derivatives of Nu and Nw, i.e. they are equal to zero and not included.

Equations 3.39 - 3.44 can be put into the following compact state equation form:



∆U̇

∆V̇

∆Ẇ

∆Ṗ

∆Q̇

∆Ṙ

∆φ̇

∆θ̇



=



Xu∗ 0 Xw∗ 0 Xq∗ 0 0 −g cos θ∗

Yu∗ Yv∗ Yw∗ Yp∗ 0 Yr∗ g cos θ∗ 0

Zu∗ 0 Zw∗ 0 Zq∗ 0 0 −g sin θ∗

0 Lv∗ 0 Lp∗ 0 0 0 0

Mu
∗ 0 Mw

∗ 0 Mq
∗ 0 0 0

0 Nv∗ 0 0 0 Nr∗ 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0





∆U

∆V

∆W

∆P

∆Q

∆R

∆φ

∆θ



+



0 0 0

0 0 Yδr
∗

0 Zδq
∗ 0

Lδp
∗ 0 0

0 Mδq
∗ 0

0 0 Nδr
∗

0 0 0

0 0 0




δp

δq

δr



(3.45)

where in the Equations 3.45, we have used for small perturbations that the Euler

angles (bank angle and attitude), only retaining 1st order terms, can be approximated

as:

∆φ̇ = ∆P (3.46)
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∆θ̇ = ∆Q (3.47)

Finally Equations 3.45 yield the linear state-space equations of the BTT missile (under

the assumptions in the section).

3.3 Calculation of Equilibrium Points

From Section 3.2, (x∗, u∗) is an equilibrium point of Equation 3.1 for all t ≥ 0.

f(t, x∗, u∗) = 0 (3.48)

Thus, equations 3.9-3.14, for the assumptions of zero angular and translational

accelerations and the assumptions about ignoring the time rates of change of the

mass, mass moments of inertia, and c.g. location yield

X∗ = FXaero
∗ + FXg

∗ + TX
∗ = 0

Y ∗ = FYaero
∗ + FYg

∗ = 0

Z∗ = FZaero
∗ + FZg

∗ = 0

L∗ = Laero
∗ = 0

M∗ = Maero
∗ +Mg

∗ = 0

N∗ = Naero
∗ +Ng

∗ = 0

(3.49)

For now, we will assume XCG is not zero only to see what effect our earlier

idealization that XCG = 0 has on our linear EOM. Substituting for the aerodynamic

and gravitational forces and moments into Equation 3.49 using Equations 3.16 and

3.17 and rearranging yields
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and

X : QdpSrefCX = mg sin θ − Tx

Y : QdpSrefCY = −mg cos θ sinφ

Z : QdpSrefCZ = −mg cos θ cosφ

L : QdpSrefLrefCL = 0

M : QdpSrefLrefCM = XCGmg cos θ cosφ

N : QdpSrefLrefCN = −XCGmg cos θ sinφ

(3.50)

If we assume some level of thrust Tx, we can solve for the trimmed aerodynamic

coefficients CX , CY , CZ , CL, CM , and CN . The values of the aerodynamic coefficients

in trimmed flight are given as follows:

CX
∗ =

mg sin θ∗ − Tx∗

Qdp
∗Sref

CY
∗ =
−mg cos θ∗ sinφ∗

Qdp
∗Sref

CZ
∗ =
−mg cos θ∗ cosφ∗

Qdp
∗Sref

CL
∗ = 0

CM
∗ =

XCGmg cos θ∗ cosφ∗

Qdp
∗SrefLref

CN
∗ =
−XCGmg cos θ∗ sinφ∗

Qdp
∗SrefLref

(3.51)

From idealization (2), i.e., XCG = 0, CM
∗ = CN

∗ = 0. In addition, CY
∗ = 0

under the previous idealization that the missiles bank angle is zero (φ = 0). These

idealizations were accounted for in all linear equations presented in the previous

section. From the above Equations 3.51, we can see that when we assume that the

equilibrium value of the c.g. location is zero that the trimmed values of CM and

CN are zero. Also from equations 3.51, we can see even if XCG is non-zero but

relatively “small” that at “high” missile velocities and low missile altitudes (this
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gives large Qdp) that the trimmed values of CM and CN are “small” and that the

idealization that XCG = 0 is valid. However, this might not be a valid idealization

for a “slow” moving aircraft, such as one approaching for landing, or for very “large”

c.g. displacements.

In Section 2.4, the BTT missile stability derivatives were presented and Table 2.3

summarized their dependence on other variables. Using Table 2.3 as reference, Equa-

tions 3.51 are rewritten to emphasize their dependence on the stability derivatives

(also XCG is assumed to be zero, as discussed previously):

The m-file “btt linr.m” uses the above equations, given a user specified trim angle

of attack, α∗, and altitude, to iterate for the corresponding Mach number and actuator

deflection δq.

CD(δq
∗,M∗, α∗) + CDT (M∗) =

mg sin θ∗ − Tx∗

Qdp
∗Sref

CYβ(M∗, α∗)β∗ + CYδr (M
∗, β∗)δr

∗ =
−mg cos θ∗ sinφ∗

Qdp
∗Sref

CNα(M∗)α∗ + CNδq (M
∗, α∗)δq

∗ =
−mg cos θ∗ cosφ∗

Qdp
∗Sref

CLδp (M∗, α∗)δp
∗ + CLp(M

∗, α∗)(Lref/2Vb)P
∗ + CLβ(M∗, α∗)β∗ = 0

CMδq
(M∗, α∗)δq

∗ + CMq(M
∗, α∗)(Lref/2Vb)Q

∗ + CMα(M∗, α∗)α∗ = 0

CNδr (M
∗, β∗)δr

∗ + CNr(M
∗, β∗)(Lref/2Vb)R

∗ + CNβ(M∗, α∗)β∗ = 0

(3.52)

Under Steady state flight assumptions (i) and (ii), equations 3.52 can be rewritten

as follows:
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CD(δq
∗,M∗, α∗) + CDT (M∗) =

mg sin θ∗ − Tx∗

Qdp
∗Sref

CYδr (M
∗, β∗)δr

∗ =
−mg cos θ∗sinφ∗

Qdp
∗Sref

= 0, (∵ φ = 0)

CNα(M∗)α∗ + CNδq (M
∗, α∗)δq

∗ =
−mg cos θ∗

Qdp
∗Sref

δp
∗ = 0

δq
∗ =
−CMα(M∗, α∗)

CMδq
(M∗, α∗)

α∗, (Solved for δq)

δr
∗ = 0

(3.53)

The m-file “btt linr.m” uses the above equations, given a user specified trim angle

of attack, α∗, and altitude, to iterate for the corresponding Mach number and actuator

deflection δq.

3.4 Scaled Linear BTT Missile State-Space System

In this section, the linear EOM derived in the previous section are dimension-

ally scaled. A dimensionally scaled state-space system is desirable for the following

reasons:

1. Modal analysis of the state-space system to determine the systems natural ten-

dencies is easier to interpret when all of the system equations have the same

units. This makes comparisons between translational and rotational modes of

the same (scaled) size.

2. Multivariable control theory such as the H∞ design method essentially “shape”

the systems transfer function matrix (TFM) singular value bode magnitude

plots based upon some user supplied weightings on performance and/or robust-

ness. It is well known that singular values are unit sensitive and thus it is
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desirable that we have singular value loop shapes that have the same units such

that we are comparing “apples to apples” and not “apples to oranges”.

3. From a properly done dimensional analysis (i.e., a properly scaled system), a

simple observation of the systems terms is all that is necessary to determine the

relative importance of the dependent variables in the EOM. This is an invaluable

tool during model reduction.

Non-dimensional State Equations:

In our dimensional analysis we will define the following non-dimensional quantities:

û ≡ ∆U

Vb
∗

v̂ ≡ ∆V

Vb
∗

ŵ ≡ ∆W

Vb
∗

p̂ ≡ t̂∆P

q̂ ≡ t̂∆Q

r̂ ≡ t̂∆R

(3.54)

where

t̂ ≡ mVb
∗

Qdp
∗Sref

, (sec) (3.55)

and where we define the non-dimensional aerodynamic time, τ , as

τ ≡ t

t̂
(3.56)

From Equation 3.56, we can see that the differentiation operator now becomes

d()

dt
=

1

t̂

d()

dτ
=
Qdp

∗Sref
mVb

∗
d()

dτ
(3.57)

dt = t̂ dτ .
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Substituting for ∆U,∆V,∆W,∆P,∆Q, and ∆R in equations 3.39 - 3.44 using

equations 3.54 and also substituting for the differentiation operator using equation

3.57 and then dividing through the resulting equations by Vb
∗ yields the following

non-dimensional equations of motion:

˙̂u = xu
∗û+ xw

∗ŵ + xq
∗q̂ − ĝ cos θ∗∆θ (3.58)

˙̂v = yu
∗û+ yv

∗v̂ + yw
∗ŵ + yp

∗p̂+ yr
∗r̂ + ĝ cos θ∗∆φ (3.59)

˙̂w = zu
∗û+ zw

∗ŵ + zq
∗q̂ + zδq

∗∆δq − ĝ sin θ∗∆θ (3.60)

˙̂p = lp
∗p̂+ lv

∗v̂ + lδp
∗∆δp (3.61)

˙̂q = mu
∗û+mw

∗ŵ +mq
∗q̂ +mδq

∗∆δq (3.62)

˙̂r = nv
∗v̂ + nr

∗r̂ + nδr
∗∆δr (3.63)

where

ĝ ≡ m∗g

Qdp
∗Sref

(3.64)

The lower case stability derivatives are dimensionless are related to the previously

defined stability derivatives as follows:

xu
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Xu
∗ = 2CX

∗ cosα∗

xw
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Xw
∗ = 2CX

∗ sinα∗

xq
∗ =

(
1

Vb
∗

)
Xq
∗ = −

(
W ∗

Vb
∗

)
= sinα∗

yu
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Yu
∗ = 2CY

∗ cosα∗

yv
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Yv
∗ = CNβ

∗
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yw
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Yw
∗ = 2CY

∗ sinα∗

yp
∗ =

(
1

Vb
∗

)
Yp
∗ =

(
W ∗

Vb
∗

)
= sinα∗

yr
∗ =

(
1

Vb
∗

)
Yr
∗ = −

(
U∗

Vb
∗

)
= − cosα∗

yδr
∗ =

(
m∗

Qdp
∗Sref

)
Yδr
∗ = CYδr

∗

zu
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Zu
∗ = 2CZ

∗ cosα∗ − CNα∗ sinα∗

zw
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Zw
∗ = 2CZ

∗ sinα∗ + CNα
∗ cosα∗

zq
∗ =

(
1

Vb
∗

)
Zq
∗ =

(
U∗

Vb
∗

)
= cosα∗

zδq
∗ =

(
m∗

Qdp
∗Sref

)
Zδq
∗ = CNδq

∗

lp
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Lp
∗ =

(
1
2
m∗Lref

2

Ixx
∗

)
CLp

∗

lv
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)2

Vb
∗Lv

∗ =

(
2m∗2Lref
ρ∗SrefIxx

∗

)
CLβ

∗

lδp
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)2

Lδp
∗ =

(
2m∗2Lref
ρ∗SrefIxx

∗

)
CLδp

∗

mu
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)2

Vb
∗Mu

∗ = −
(

2m∗2Lref
ρ∗SrefIyy

∗

)
CMα

∗ sinα∗

mw
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)2

Vb
∗Mw

∗ =

(
2m∗2Lref
ρ∗SrefIyy

∗

)
CMα

∗ cosα∗

mq
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Mq
∗ =

(
1
2
m∗Lref

2

Iyy
∗

)
CMq

∗

mδq
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)2

Mδq
∗ =

(
2m∗2Lref
ρ∗SrefIyy

∗

)
CMδq

∗

nv
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)2

Vb
∗Nv

∗ =

(
2m∗2Lref
ρ∗SrefIzz

∗

)
CNβ

∗
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nr
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)
Nr
∗ =

(
1
2
m∗Lref

2

Izz
∗

)
CNr

∗

nδr
∗ =

(
m∗Vb

∗

Qdp
∗Sref

)2

Nδr
∗ =

(
2m∗2Lref
ρ∗SrefIzz

∗

)
CNδr

∗

Using Equations 3.55 - 3.64 and the above defined non-dimensional stability

derivatives, we can write the state equations in the following compact form:



˙̂u

˙̂v

˙̂w

˙̂p

˙̂q

˙̂r

∆φ̇

∆θ̇



=



xu∗ 0 xw∗ 0 xq∗ 0 0 −ĝ cos θ∗

yu∗ yv∗ yw∗ yp∗ 0 yr∗ ĝ cos θ∗ 0

zu∗ 0 zw∗ 0 zq∗ 0 0 −ĝ sin θ∗

0 lv
∗ 0 lp

∗ 0 0 0 0

mu∗ 0 mw∗ 0 mq∗ 0 0 0

0 nv∗ 0 0 0 nr∗ 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0





û

v̂

ŵ

p̂

q̂

r̂

∆φ

∆θ



+



0 0 0

0 0 yδr
∗

0 zδq
∗ 0

lδp
∗ 0 0

0 mδq
∗ 0

0 0 nδr
∗

0 0 0

0 0 0




δp

δq

δr



(3.65)

where in Equation 3.65, we have made use of the fact that

1

t̂

d(∆φ)

dτ
=

1

t̂
p̂

or simply

d(∆φ)

dτ
= p̂

and similarly,

d(∆θ)

dτ
= q̂

Note that v̂ is the sideslip angle, ∆β, under the assumption the equilibrium value

of V is zero. However, ŵ is only approximately equal to ∆α for “small” equilibrium

or reference values of α since we are using the principal body axis and not the sta-

bility axis for our linearized state-space system. Now that we have missile dynamics
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represented by its mathematical model, the following two questions is of particular

interest to us.

1. How does the missile plant change when it travels at different velocities?

2. How does the missile plant change when it ascends up or descends down?

The following plots ranging from Figure 3.1 - 3.15 show how various missile plant

outputs vary with respect to aileron, elevator and rudder inputs while the altitude is

varied. The following plots ranging from Figure 3.16 - 3.30 show how various missile

plant outputs vary with respect to aileron, elevator and rudder inputs while the mach

is varied.

Missile I/P-O/P Transfer Function Frequency Responses - Altitude Vary-
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Figure 3.1: Frequency Response - Ay vs Aileron - Altitude Varying
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Figure 3.2: Frequency Response - Ay vs Rudder - Altitude Varying
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Figure 3.3: Frequency Response - Az vs Elevator - Altitude Varying
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Figure 3.4: Frequency Response - φ vs Aileron - Altitude Varying
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Figure 3.5: Frequency Response - φ vs Rudder - Altitude Varying
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Figure 3.6: Frequency Response - θ vs Elevator - Altitude Varying
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Figure 3.7: Frequency Response - β vs Aileron - Altitude Varying
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Figure 3.8: Frequency Response - β vs Rudder - Altitude Varying
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Figure 3.9: Frequency Response - α vs Elevator - Altitude Varying
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Figure 3.10: Frequency Response - γ vs Elevator - Altitude Varying
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Figure 3.11: Frequency Response - P vs Aileron - Altitude Varying
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Figure 3.12: Frequency Response - P vs Rudder - Altitude Varying
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Figure 3.13: Frequency Response - Q vs Elevator - Altitude Varying
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Figure 3.14: Frequency Response - R vs Aileron - Altitude Varying
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Figure 3.15: Frequency Response - R vs Rudder - Altitude Varying
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Figure 3.16: Frequency Response - Ay vs Aileron - Mach Varying
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Figure 3.17: Frequency Response - Ay vs Rudder - Mach Varying
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Figure 3.18: Frequency Response - Az vs Elevator - Mach Varying
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Figure 3.19: Frequency Response - φ vs Aileron - Mach Varying
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Figure 3.20: Frequency Response - φ vs Rudder - Mach Varying
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Figure 3.21: Frequency Response - θ vs Elevator - Mach Varying
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Figure 3.22: Frequency Response - β vs Aileron - Mach Varying
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Figure 3.23: Frequency Response - β vs Rudder - Mach Varying
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Figure 3.24: Frequency Response - α vs Elevator - Mach Varying

10
−3

10
−2

10
−1

10
0

10
1

10
2

−80

−60

−40

−20

0

20

Frequency Response − γ to Elevator

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

b)

 

 

Mach = 1.068
Mach = 1.5114

Figure 3.25: Frequency Response - γ vs Elevator - Mach Varying
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Figure 3.26: Frequency Response - P vs Aileron - Mach Varying
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Figure 3.27: Frequency Response - P vs Rudder - Mach Varying
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Figure 3.28: Frequency Response - Q vs Elevator - Mach Varying
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Figure 3.29: Frequency Response - R vs Aileron - Mach Varying
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Figure 3.30: Frequency Response - R vs Rudder - Mach Varying

3.5 Discussion of BTT Missile Natural Modes (Eigenvalues)

Using the non-dimensional linear system of equations, equation 3.65, and the iter-

ative trim procedure in MATLAB m-file “missile plant analysis.m”, the characteristic

modes of the BTT missile were investigated for the steady flight condition discussed

in Section 3.2. The plant dynamics, or “A” matrix, of equation 3.65 was used in its

presented form to find the characteristic modes of the missile. The condition number

of the A-matrix in equation 3.65 was very large (>1 × 106) due to the integration

of p and q for φ and θ, respectively. After observing the relative sizes of the non-

dimensional terms and the very weak longitudinal and lateral dynamic coupling, the

following reduced systems are used for determining the characteristic modes:
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3.5.1 Longitudinal Dynamics

States = [Axial Velocity, Vertical Velocity, Pitch Rate, Pitch Angle]

Controls = [Elevator Deflection]

Output of Interest = [Flight Path Angle γ]

U̇

Ẇ

Q̇

θ̇


=



Xu Xw Xq Xθ

Zu Zw Zq Zθ

Mu Mw Mq 0

0 0 1 0





U

W

Q

θ


+



0

Zδq

Mδq

0


[
δq

]
(3.66)

[
γ

]
=

[
0 −1 0 1

]


U

W

Q

θ


+

[
0

] [
δq

]
(3.67)

Non-Minimum Phase Zero & Unstable Pole Dynamics Acceleration control of

highly agile, aerodynamically-controlled missiles is a well-known non-minimum phase

control problem [8]. Also to qualitatively understand this non-minimum phase be-

haviour consider the control problem of accelerating the missile upward. Typically a

tail-controlled missile (i.e control surface aft of the center of gravity, G) is statically

stable with Cmα < 0, Czδ < 0 and Cmδ < 0. This means that a negative unit-step pitch

deflection command initially induces a downward force on the missile causing the mis-

sile to accelerate downward. This downward force also induces a counter-clockwise

pitching-moment about the center of gravity that tries to push the nose-up. But due

to the inherent tendency of the missile to oppose any such change in angle of attack

the missile continues to accelerate downward until an overall positive pitching moment

about the center of gravity develops. Eventually the trim angle-of-attack and conse-

quently the lift acting on the vehicle increase which together create an upward force
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about the fuselage; and thus the missile accelerates upward as desired. The above

described non-minimum phase behaviour is a characteristic of several important tail

controlled aerospace flight control problems such as control of Vertical Take-off and

Landing (VTOL) aircraft, and Conventional Take-offand Landing (CTOL) aircraft.

Pitch-up instability phenomenon occurs when center of pressure moves forward due

to tip stall due to high angle of attack. Both the RHP Pole-Zero dynamics was cap-

tured here in linearization routine and their behaviour with different flight conditions

are explained below. The decoupled longitunal system exhibits nonminimum phase

behaviour with flight path angle dynamics. So naturally the below question arises in

our mind.

When does a Nonminimum phase system arise? What is the cause?

Subtracting two systems where one has slow & weak dynamics and other has

fast & strong dynamics will result in a nonminimum phase system.

Illustrative Example. Consider the following systems

Slow/Weak Dynamics - Fast/Strong Dynamics =
3

s+ 1
− 4

s+ 2

=
3(s+ 2)− 4(s+ 1)

(s+ 1)(s+ 2)

=
2− s

(s+ 1)(s+ 2)

The nonminimum phase flight path angle with respect to the elevator deflection dy-

namics can be explained below

λ(s)

δq(s)
= Slow/Weak Dynamics - Fast/Strong Dynamics

=
α(s)

δq(s)
− θ(s)

δq(s)

94



www.manaraa.com

This holds true even if we try with a perfectly decoupled longitudinal system as

both pitch and angle of attack parameters are longitudinal components. Similarly,

the control problem of acceleration in upward direction with respect to the elevator

deflection can be explained as follows

az = ẇ − qu+ pv − cross coupling components

= Slow/Weak Dynamics - Fast/Strong Dynamics

So, if we neglect the inertial cross coulping terms during linearization, we won’t be

able to capture the nonminimum phase behaviour. That is why, here in this research

we get only minimum phase system here and this assumption is made to make the

control design easy, when the nonlinear dynamic inversion technique is applied to

get a nonlinear controller. This holds true even if we try with a perfectly decoupled

system as cross coupling terms won’t be present even there.

Thus, in general if two systems are combined such as g1
s+p1
− g2

s+p2
, the process will

result in non-minimum phase behaviour if and only if

g1

p1

− g2

p2

> 0 and g1 − g2 < 0.

Effect of Coupling on Zero-dynamics. When you have a tightly coupled system,

the transmission zeros of the system are not the same as zeros in the plant input-

output transfer functions. But when systems are decoupled (like in our case), then

the transmission zeros of the system are the same as zeros in the plant input-output

transfer functions.

Missile experiences higher dynamic pressure, “Qdp” at lower altitudes, as a result of

which the pitch up instability and nonminimum phase behaviour is very strong at

those altitudes. And the magnitude of RHP pole and RHP zero decrease as altitude
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increases. The above said behaviour is captured well in Figures 3.31 & 3.35. While

the effect of angle of attack on RHP pole-zero is opposite to that of altitude effects. As

angle of attack increases, both the magnitude of RHP pole and RHP zero increased.

This behaviour is captured well in Figures 3.33 & 3.37 respectively.

0 10 20 30 40 50 60
10

20

30

40

50

60

70

80

90

100

110
Longitudinal Plant RHP Zero Dynamics − Altitude Variation

Altitude (kft)

R
H

P
 Z

er
o 

Lo
ca

tio
n

 

 

α = 6 deg
α = 7 deg
α = 8 deg
α = 9 deg

Figure 3.31: Longitunal Plant RHP Zero Dynamics - Altitude Varying
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Figure 3.32: Longitunal Plant RHP Zero Dynamics - Altitude Varying With Mach
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Figure 3.33: Longitunal Plant RHP Zero Dynamics - α Varying

97



www.manaraa.com

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
55

60

65

70

75

80

85

90

95

100
Longitudinal Plant RHP Zero Dynamics − Mach Varying

Mach

R
H

P
 Z

er
o 

Lo
ca

tio
n

 

 

Altitude = 30 kft
Altitude = 40 kft
Altitude = 50 kft

Figure 3.34: Longitunal Plant RHP Zero Dynamics - Mach Varying

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Longitudinal Plant RHP Pole Dynamics − Altitude Variation

Altitude (kft)

R
H

P
 P

ol
e 

Lo
ca

tio
n

 

 

α = 6 deg
α = 7 deg
α = 8 deg
α = 9 deg

Figure 3.35: Longitunal Plant RHP Pole Dynamics - Altitude Varying
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Figure 3.36: Longitunal Plant RHP Pole Dynamics - Altitude Varying With Mach
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Figure 3.37: Longitunal Plant RHP Pole Dynamics - α Varying
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Figure 3.38: Longitunal Plant RHP Pole Dynamics - Mach Varying

3.5.2 Lateral Dynamics

States = [Lateral Velocity, Roll rate, Yaw Rate , Roll Angle]

Controls = [Aileron Deflection, Rudder Deflection]

Output of Interest = [Roll φ, Roll Rate P, Sideslip β, Yaw Rate R]



V̇

Ṗ

Ṙ

φ̇


=



Yv Yp Yr Yφ

Lv Lp Lr 0

Nv Np Nr 0

0 1 0 0





V

P

R

φ


+



Yδp Yδr

Lδp Lδr

Nδp Nδr

0 0


 δp

δr

 (3.68)



β

P

R

φ


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





V

P

R

φ


+

0 0

0 0


 δp

δr

 (3.69)
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Figure 3.39: Lateral Plant RHP Pole Dynamics - Altitude Varying
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Figure 3.40: Lateral Plant RHP Pole Dynamics - α Varying
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Figure 3.41: Lateral Plant Pole-Zero Map - α Varying

Figure 3.42: Lateral Plant Pole-Zero Map - Altitude Varying

Figures 3.39, 3.40, 3.41 & 3.42 show the calculated lateral eigenvalues for the
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above non-dimensional A-matrices. The unstable pole denotes the “spiral divergence

mode”. This indicates a more sluggish response of the missile in the lateral direction

at higher altitudes. Similar to the longitudinal dynamics, the unstable poles of the

lateral dynamics move closer to the imaginary axis as altitude increases, while they

move deeper into the RHP plane when angle of attack is increased.

Tables 3.1 & 3.3 show the longitudinal and lateral eigenvalues for the above non-

dimensional A matrices when they are calculated for the missile flying at 10 kft and 40

kft respectively, for several different angles of attack, and initial time mass properties

(fully fuelled missile). Similarly Tables 3.2 & 3.4 show the longitudinal and lateral

eigenvalues for same angles of attack and altitude at 10 kft and 40 kft respectively

but for the “fuel-spent” mass properties of the missile (fuel depleted missile).

The system modes for the non-dimensional system are given by the following equation

(i.e., only if all the system eigenvalues are distinct):

~x(τ) =
n∑
i=1

(~pi ~x0)eλiτ ~qi =
n∑
i=1

(~pi ~x0)eλi
t
t̂ ~qi (3.70)

where

~pi
def
= Left eigenvector of A associated with λi

~qi
def
= Right eigenvector of A associated with λi

From equation (3.70) we can see that the aerodynamic time scaling factor given by

equation 3.71

t̂
def
=

mVb
∗

Qdp
∗Sref

=
2m

ρ∗Vb
∗Sref

(3.71)

scales the response time of each mode. Since this is the case, we can see that the

missiles mass, altitude (ρ is dependent on altitude), velocity magnitude, and aerody-

namic reference area are very important in determining missile responsiveness. This
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is evident from lateral eigenvalues from tables 3.1 & 3.3. The lateral eigenvalues are

about the same magnitude for a majority of the angles of attack but the time-scaling

factors at higher altitude from table 3.3 are on the order of three times as large as

those at lower altitudes given by the table 3.1. This indicates a more “sluggish”

response of the missile in the lateral direction at higher altitudes (even though the

crresponding Mach numbers are relatively close).

(t̂) α

(deg)

Mach Qdp(lbf/ft
2) Longitudinal

Poles

Lateral Poles

6.11 2 3.24 1.7 ×104 -0.080±0.796i -20.24, -0.12±2.35i

6.26 5 3.16 1.019 ×104 -0.085±1.541i -23.63, -0.34±2.13i

9.29 10 2.13 4.628 ×103 6.357, -6.650 -3.24, 2.06, -34.32

8.91 15 2.22 5.034 ×103 4.549, -4.843 -3.34, 1.71, -40.37

8.63 20 2.30 5.372 ×103 -0.142±6.205i -2.87, -48.53, 0.87

Table 3.1: Time-Zero Mass Properties for Altitude = 10 kft

(t̂) α

(deg)

Mach Qdp(lbf/ft
2) Longitudinal

Poles

Lateral Poles

3.70 2 3.24 1.7 ×104 -0.062±0.540i -18.24, -0.08±1.59i

3.79 5 3.16 1.019 ×104 -0.065±1.045i -21.30, -0.22±1.44i

5.63 10 2.13 4.628 ×103 4.303, -4.521 -2.16, 1.41, -31.00

5.39 15 2.22 5.034 ×103 3.077, -3.294 -2.20, 1.18, -36.55

5.22 20 2.30 5.372 ×103 -0.103±4.209i -1.85, -43.96, 0.62

Table 3.2: Fuel Spent Mass Properties for Altitude = 10 kft
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(t̂) α

(deg)

Mach Qdp(lbf/ft
2) Longitudinal

Poles

Lateral Poles

17.86 2 3.69 3.744 ×103 1.896, -2.042 -20.29, -0.17±3.41i

18.34 5 3.59 3.55 ×103 2.495, -2.664 -23.12, -0.68±3.40i

25.16 10 2.62 1.887 ×103 9.505, -9.810 -5.31, 2.57, -32.43

26.39 15 2.50 1.716 ×103 7.628, -8.801 -6.44, 2.22, -38.22

25.75 20 2.56 1.802 ×103 -0.205±7.841i -6.30, -44.82, 0.92

Table 3.3: Time-Zero Mass Properties for Altitude = 40 kft

(t̂) α

(deg)

Mach Qdp(lbf/ft
2) Longitudinal

Poles

Lateral Poles

10.81 2 3.69 3.744 ×103 1.280, -1.391 -18.22, -0.11±2.31i

11.10 5 3.59 3.55 ×103 1.687, -1.812 -21.05, -0.42±2.30i

15.23 10 2.62 1.887 ×103 6.443, -6.660 -3.42, 1.78, -29.81

15.98 15 2.50 1.716 ×103 5.172, -5.434 -4.05, 1.56, -35.46

15.59 20 2.56 1.802 ×103 -0.139±5.319i -3.83, 0.67, -41.74

Table 3.4: Fuel Spent Mass Properties for Altitude = 40 kft
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(t̂) α

(deg)

Mach Qdp(lbf/ft
2) Longitudinal

Poles

Lateral Poles

26.36 2 2.0 1.72 ×103 -0.1142±2.94i -19.57, -0.25±5.07i

26.36 5 2.0 1.72 ×103 -0.1324±4.64i -19.57, -0.25±5.07i

26.36 10 2.0 1.72 ×103 9.9, -10.23 2.84, -5.52, -33.32

26.36 15 2.0 1.72 ×103 -7.63, -8.00 2.22, -6.43, -38.22

26.36 20 2.0 1.72 ×103 -0.2124±8.49i 0.98, -6.51, -45.36

Table 3.5: α Variation for Alt. = 40 kft, Mach = 2.0

(t̂) α

(deg)

Mach Qdp(lbf/ft
2) Longitudinal

Poles

Lateral Poles

73.21 15 0.9 222.89 -17.01, 15.28 -2.43, -0.08±1.59i

43.93 15 1.5 619.16 -16.14, 15.32 1.33, -0.22±1.44i

32.94 15 2.0 1.101 ×103 -8.62, 8.08 2.71, -8.09, -36.31

21.96 15 3.0 2.477 ×103 -7.90, 7.61 1.43, -4.80, -38.20

16.47 15 4.0 4.403 ×103 -9.19, 9.00 -40.66, -0.80±2.78i

Table 3.6: Mach Variation for Alt. = 40 kft, α = 15 deg

From the above tables, we can see that the longitudinal and lateral modes are

very dependent on the angle of attack and Mach number for a given altitude. The

affects of Mach number and angles of attack on two of the pertinent longitudinal

aerodynamic stability derivatives are illustrated in Figures 2.15 and 2.17. Figure

2.15 shows a plot of CMα versus angle of attack and Mach number. The Figure 2.17

shows a plot of CMQ
versus angle of attack and Mach number. Although the angle

of attack and Mach number are very important factors that influence the modes of
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the missile, a quick comparison of Tables 3.1 & 3.3 show that they are not the only

influential factors. Note the longitudinal eigenvalues for an angle of attack of 2 deg

in Tables 3.1 & 3.3. Although the corresponding Mach numbers only differ by 12%,

the eigenvalues of Table 3.1 for this case are a pair of stable complex poles while

the corresponding eigenvalues of Table 3.3 consist of one stable and one unstable

pole. The major difference between these two cases is that the dynamic pressure is

much smaller for this case in Table 3.3. However, this should not be surprising if we

inspect the non-dimensional stability derivatives of Section 3.4. In Section 3.4, we

see that the non-dimensional stability derivative, mw, is inversely proportional to the

dynamic pressure. The dynamic pressure in Table 3.1 is about 4.5 times as large as the

corresponding angle of attack in Table 3.3. This indicates that the non-dimensional

stability derivative, mw, of Table 3.3 is 4.5 times as large as that in Table 3.1 for this

condition (i.e., angle of attack and approximately the same Mach number).

The trim conditions in Tables 3.1 through 3.4 let the missile Mach number vary

(and thus dynamic pressure), that is calculated by solving the longitudinal part of

trim equations (3.52). Since the missile is assumed not to have any throttle control,

the missile can not be trimmed to a specified Mach number for a given angle of attack.

However, it is of interest to see how the longitudinal and lateral eigenvalues vary as

a function of only Mach number while holding angle of attack constant and vice

versa. Simply substituting a Mach number, angle of attack, side-slip angle, etc., into

trim equations (3.52) has inherent errors associated with it since, more likely than

not, there does not exist a set of fin deflections which can be found to satisfy these

equations. For example, considering only the longitudinal plane, we only have one

independent control variable (pitch fin deflection angle). Thus, we can only specify

one dependent variable to trim (if we had a propulsive throttle control we could trim

Mach number and angle of attack simultaneously). In Tables 3.1 through 3.4 we chose
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angle of attack as the dependent trim variable and let Mach number and dynamic

pressure vary. However, in Table 3.5 angle of attack is varied while holding altitude

constant at 40kft and Mach constant at 2.0 (and thus dynamic pressure). In Table

3.6, the angle of attack is held constant at 15 degrees, altitude is held constant at

40kft, and the missile Mach number is varied between 0.9 and 4.0.

In short, the major factors that influence the modes of missile can be seen from

the form of the non-dimensional stability derivatives of the previous section. We can

see that the dynamic pressure, the missile mass properties, and missile aerodynamic

reference areas and lengths scale the non-dimensional stability derivatives. In addi-

tion, the stability derivatives themselves, as can be seen in Figures 2.15 and 2.17, are

very dependent on the angle of attack and Mach number. As a note, it should not

now be surprising to the reader to learn that many missile and aircraft flight control

systems are gain scheduled as a function of dynamic pressure, angle of attack, and

Mach number.

3.6 Missile Static Analysis - Elevator & Throttle Trim

Static analysis is needed to study how missile controls vary to attain a commanded

flight condition. Given the saturation limits on both missile fin actuators and fin

rates, this static analysis will throw light on missile flight conditions which will result

in fin actuator saturation. Thus in this linearization routine where a steady level

flight for missile is considered, static analysis is performed on the trim elevator and

trim throttle conditions and different flight parameters affecting that is studied.
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Figure 3.43: Level Flight - Elevator Trim for Altitude

6 6.5 7 7.5 8 8.5 9 9.5 10
0

2

4

6

8

10

12

14

16

18
Level Flight − Elevator Trim at Mach = 2

α (deg)

δ e (
de

g)

 

 

Altitude = 5 kft
Altitude = 10 kft
Altitude = 20 kft
Altitude = 30 kft
Altitude = 40 kft

Figure 3.44: Level Flight - Elevator Trim for α
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Figure 3.45: Level Flight - Throttle Trim
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Figure 3.46: Level Flight - Throttle Trim for Mach
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Figure 3.47: Level Flight - Mach Varying with Altitude
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Figure 3.48: Level Flight - Mach Varying with α
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Figure 3.49: Level Flight - α Varying with Altitude

From figure 3.43, it is clear that when a rise in altitude is demanded, the elevator

deflection increases. Also when positive angle of attack is commanded, the elevator

fin deflection increases. This is expected because, elevator deflection is responsible

for the missile to pitch up or down. While positive elevator deflection pitches up

the missile to match the commanded angle of attack or altitude, negative deflection

does the opposite. Interesting point to note here is the fin saturation level. If higher

angle of attack or altitude is commanded, elevator deflection saturates. While a lin-

ear behaviour is exhibited by the fin deflection with respect to change in altitude

and angle of attack, the same behaviour is lost and saturation occurs beyond cer-

tain commanded values. This is very much evident from the figure 3.43. Thus given

this detailed analysis, one should not command more than some threshold angle of

attack or altitude values as fin deflections will saturate beyong those threshold values.

From Figures 3.47, 3.48 & 3.49 respectively, the following concepts are very evident.
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1. Mach ∝ 1
h

2. Mach ∝ 1
α

3. h ∝ α

3.7 Summary and Conclusions

In this chapter, mathematical modeling of a BTT missile was discussed. Modeling

included linearization routine using perturbation technique and time scaling. Both

lateral and longitudinal models were presented in detail. The nonminimum phase ze-

ros and unstable poles in both longitunal and lateral dynamics were analyzed in detail.

Finally the missile static analysis was performed for elevator trim and throttle trim

conditions and effect of various flight parameters on fin saturations was presented.
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Chapter 4

MISSILE SEEKER / NAVIGATION & GUIDANCE

4.1 Introduction and Overview

This chapter describes the seeker/navigation system dynamics and the three guid-

ance options available to the missile. Navigation is traditionally defined as knowing

the location of a missile [62]. This is essential in long distance applications such as

inter-Continental Ballistic Missiles (ICBMs). For EMRAAT missile being considered,

navigation involves using range and range-rate information to determine where it is

with respect to its target. Hence, in this document, the term navigation is used to

refer to the missile determining its location with respect to the target.

A seeker is a range and angle sensing instrument which resides in the forward

portion of the missile. It provides the guidance system with information about the

evading target. The gimbals isolate the gyros from the missile’s rotational environ-

ment, as explained in [60]. The seeker/navigation system can be visualized as shown

in the Figure 4.1. It consists of a (1) Relative Range/Rate Generator, (2) LOS Angle

Generator, (3) A/D Quantizing block, (4) Gimbal Angle/Rate Error Generator and

a (5) Gimbal Rate Generator. Each subsystem is described in this chapter. The next

section describes the seeker/navigation system in greater detail.

The missile guidance systen processes range and range-rate information from the

seeker / navigation system and generates commanded horizontal and vertical accel-

erations to the autopilot. Three guidance laws are available to the missile.
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Figure 4.1: Block Diagram of Seeker/Navigation Model Algorithm

1. Proportional Navigation Guidance

2. Optimal Control Theory Navigation

3. Differential Game Theory Navigation

All three guidance laws are discussed in details in this chapter.

4.2 Seeker Frame

The missile tracks its target using a range and angle sensing system called the

seeker. The seeker sits on a gimballed platform, affixed toward the nose of the mis-

sile. The seeker frame is a right handed coordinate system with its origin located at

the time-zero missile’s center of gravity CG0. Although the seeker is located in the

forward part of the missile, in this model the seeker frame origin is located at the

missile CG0 for mathematical convenience. At large distance and for large closing

velocity, the error due to this misalignment is innocuous [2]. Its axes are denoted

(Xs, Y s, Zs) and perfect tracking alignment is achieved when the seeker Xs positive
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axis passes through the target’s position. Seeker gimbal angles (ψs, θs, 0) represent

the measured azimuth and elevation of the seeker frame relative to XbZb and XbY b

planes of the body frame. This orientation of the seeker platform relative to the body

frame is shown in Figure 4.2. The seeker frame is used to describe error between

the actual flight path and the desired flight path. Vectors are transformed between

the seeker and body frames by transformation matrices which use the seeker gimbal

angles (ψs, θs, 0)s.

Figure 4.2: Seeker Frame orientation with respect to Seeker Gimbal Angles

A polar form of the target position in the seeker frame is given by components of

radial distance Range and seeker line-of-sight angles (σy, σp) as shown in the Figure

4.3, where line-of-sight is defined as the distance from the missile center-of-gravity to

the target center-of-gravity. σy corresponds t the azimuth angle and σp corresponds

to the elevation angle. These angles are calculated as a function of the seeker frame
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Figure 4.3: Seeker Frame Line-of-Sight Angles (σy, σp) and Range

representation of the vehicle relative displacement Sr
v. The vehicle realtive vector

Sr
v identified as Ss

s in the seeker frame, is found by the following equation:

Ss
s = [Tbs][Tvb]Sr

v (4.1)

The 3×3 vehicle-to-body transformation matrix, denoted by Tvb is given by the

following equations. To transform a vector from body frame to the vehicle frame, the

transposed matrix Tvb
′

is used.


Ax

Ay

Az


body

= Tvb


Ax

Ay

Az


vehicle

(4.2)

Tvb =


cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

sin(θ) cos(ψ) sin(φ)− sin(ψ) cos(φ) sin(θ) sin(ψ) sin(φ)− cos(ψ) cos(φ) cos(θ) sin(φ)

sin(θ) cos(ψ) cos(φ) + sin(ψ) sin(φ) sin(θ) sin(ψ) sin(φ)− cos(ψ) sin(φ) cos(θ) cos(φ)

 (4.3)
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The 3×3 body-to-seeker transformation matrix, denoted by Tbs is given by the

following equations. To transform a vector from the seeker frame to the body frame,

the transposed matrix Tbs
′

is used.


Ax

Ay

Az


seeker

= Tbs


Ax

Ay

Az


body

(4.4)

Tbs =


cos(θs) cos(ψs) cos(θs) sin(ψs) sin(θs)

sin(ψs) cos(ψs) 0

sin(θs) cos(ψs) sin(θs) sin(ψs) cos(θs)

 (4.5)

The seeker LOS angles are then found by:

σy = tan−1

(
Ssy
Ssx

)
(4.6)

and:

σp = tan−1

 −Ssz√
Ssx

2 + Ssy
2

 (4.7)

4.3 Seeker Dynamics

The following section describes how the missile tracks its target. the seeker refer-

ence frame is used to describe error between desired and actual missile flight path.

4.3.1 Seeker Model Software Algorithm

This section describes how the seeker dynamics are modelled in the software. Each

of the blocks in the Figure 4.1 are now described.
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Relative Range Rate Generator

A definition is definitely needed to conveniently describe the distance between the

missile and target. The vehicle separation is found as the difference between the

inertial frame target position and the inertial frame missile position. The calculations

in block one, see Figure 4.1 are described by the following equations. The relative

separation is defned as follows:

Sr
v def

= St
i − Smi (4.8)

with components

Sr
v = (Srx , Sry , Srz) (4.9)

The relative velocity is defined as follows:

Vr
v def

= Vt
i − Vmi (4.10)

with components

Vr
v = (Vrx , Vry , Vrz) (4.11)

The vehicle relative separation can be visualized as shown in the Figure 4.4.

LOS Angle Generator

To find the perfect Line-of-sight (LOS) angles, σy and σp, the relative target infor-

mation is transformed first from the relative frame into the body frame and then into

the seeker frame. The seeker LOS angles are then found by:

σy = tan−1

(
Ssy
Ssx

)
(4.12)
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Figure 4.4: Visualization of Vehicle Relative Separation

and:

σp = tan−1

 −Ssz√
Ssx

2 + Ssy
2

 (4.13)

A/D Quantizing

The perfect LOS angles (σy, σp) are then multiplied by 1000, truncated to three

significant digits and divided by 1000 to simulate A/D quantizing error, forming

(σey, σep). σey is limited to ± 2 deg and σep is limited to ± 4 deg.

Gimbal Angle Rate Error Generator

The measured error angles (σey, σep) are passed through a second order underdamped

system described by the following equations:
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ψ̈e + 2ζsωsψ̇e + ω2
sψe = ω2

sσey (4.14)

θ̈e + 2ζsωsθ̇e + ω2
sθe = ω2

sσep (4.15)

where ζs
def
= is the damping ratio of the seeker servos and is equal to 0.35

ωs
def
= is the servo natural frequency of oscillation and is equal to 49.5 ( rad

sec
)

The seeker gimbal yaw and pitch error angles (ψe, θe) and their rates (ψ̇e, θ̇e) are taken

as the output of the underdamped system. this is given in state space form by the

following matrix equations. The state equations equivalent to the yaw axis equation

is given by:

ψ̇e
ψ̈e

 =

 0 1

−ωs2 −2ζsωs


ψe
ψ̇e

+

 0

ωs
2

[σey] (4.16)

The state equations equivalent to the yaw axis equation is given by:

θ̇e
θ̈e

 =

 0 1

−ωs2 −2ζsωs


θe
θ̇e

+

 0

ωs
2

[σep] (4.17)

Gimbal Rate Generator

Figure 4.5: Commanded Gimbal Rate Generator
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The gimbal error angles and rates are scaled using:

ψ̇G = ψ̇e + 30ψe (4.18)

θ̇G = θ̇e + 30θe (4.19)

and limited by:

|ψ̇Gsat| < 75
deg

sec
= ψ̇Gmax (4.20)

|θ̇Gsat| < 75
deg

sec
= θ̇Gmax (4.21)

to form commanded gimbal rates (ψ̇Gsat , θ̇Gsat). Figure 4.5 shows a block diagram of

the scale and limit process.

Gimbal angles (ψG, θG) are found by the following equations:

ψG =

∫
ψ̇G − (P,Q,R)s (4.22)

θG =

∫
θ̇G − (P,Q,R)s (4.23)

where (P,Q,R)s represents the missile angular velocities transformed into the seeker

frame.

The servo deflections are limited in position to:

ψGmax = ±65deg (4.24)

θGmax = ±70deg (4.25)

The navigation seeker model simulates A/D quantization error as described above. It

would also be desirable to introduce noise in the relative displacement calculations.
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4.3.2 Seeker Dynamics Block Diagram

Figure 4.6: Block Diagram of Seeker Dynamics

Figure 4.6 shows the seeker dynamics in block diagram form. The block diagram only

shows the seeker azimuth angle ψG, however the same block diagram is valid for the

seeker elevation angle θG.

Neglecting nonlinearities, the seeker has a transfer function matrix given by:

H(s) =

[
ωG

2(s+ 30)

s2 + 2ζGωGs+ ωG2

]
I2×2 (4.26)

where the first channel governs the azimuth gimbal dynamics and the second channel

the elevation gimbal dynamics. Minimum phase zero in the transfer function is due

to the scaling operation explained above. Here

ζG
def
= is the damping ratio of the seeker servos and is equal to 0.35

ωG
def
= is the servo natural frequency of oscillation and is equal to 49.5 ( rad

sec
)
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Servo deflections are limited in position 1.

4.4 Guidance Algorithms

The missile guidance makes corrections to keep the missile on course by send-

ing appropriate acceleration commands to the autopilot [62], see Figure 1.1. Missile

Commanded horizontal and vertical body-frame accelerations Ayc and Azc are gen-

erated from measured relative target range and range-rate. Three guidance laws are

available to the missile autopilot. They are,

1. Proportional Navigation Guidance

2. Optimal Control Theory Navigation

3. Differential Game Theory Navigation [3]

4.4.1 Proportional Navigation Guidance

Figure 4.7: Proportional Navigation Guidance

The proportional guidance as shown in Figure 4.7 can be mathematically described

by the following equations.

Ayc = −pg1 RangeRate ψ̇G (4.27)

Azc = pg2 RangeRate
˙θG (4.28)

1Not Shown in block diagram. See code in Appendix A.
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where Ayc and Azc are in the directions of the body frame axis Y b and Zb respectively.

The proportional navigation gains are summarized in Table 4.1:

pg1 = 3.0

pg2 = 3.0

Table 4.1: Proportional Guidance Gains

For proportional guidance, the missile is commanded to turn at a rate proportional

to the angular velocity of the line-of-sight. If the proportional guidance gains, pg1 and

pg2 are small, the missile will respond slowly and it will not be able to catch the target.

If the gains are too large the (outer) guidance loop will become unstable due to the

high frequency seeker dynamics, see [62].

4.4.2 Optimal Control Theory Guidance

The optimal guidance shown in Figure 4.8 can be described using the following

equations.

Figure 4.8: Optimal Control Theory Guidance
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Body Frame Displacement Generator

The relative position and relative velocity along he missile Xv axis are transformed

into the body frame using the vehicle reference to body transformation matrix, shown

in Chapter 2.

Sx
b = TvbSx

v (4.29)

Vx
b = TvbVx

v (4.30)

Time-to-go Estimator

This outputs a guidance law time-to-go estimate that forces missile’s axial acceleration

command to be current acceleration.

Acurr = Vx
b2 + Ax

bSx
b (4.31)

If the current acceleration is not zero, time-to-go, denoted as Tgo is established as

Tgo =
2Sx

b

√
Acurr − Vxb

(4.32)

Otherwise, the time-to-go is

Tgo = −Sx
b

Vx
b

(4.33)

Relative Frame Acceleration Generator

The inertial acceleration commands are computed from missile relative positions and

velocities as follows
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Ax
i = K1

(
Srx
Tgo

+ Vrx

)
Tgo

(4.34)

Ay
i = K1

(
Sry
Tgo

+ Vry

)
Tgo

(4.35)

Az
i = K1

(
Srz
Tgo

+ Vrz

)
Tgo

− g (4.36)

where, g is defined in Equation (2.47).

Body Frame Acceleration Generator

The vehicle reference to body transformation matrix is used to transform commanded

inertial frame acceleration (Ay
i, Az

i) into missile body commands (Ayc, Azc).

4.4.3 Differential Game Theory Guidance

In such formulations, a disturbance (e.g. Target Maneuver) “competes” with a

control (e.g. missile acceleration command). The disturbance attempts to maximize

a performace index (e.g. Miss Distance), while the control attempts to minimize the

index [61]. Maneuver Index is a unit-less quantity which is used to quantify the degree

of maneuverability of the target [19]. The differential game theory guidance is a vari-

ation of the optimal guidance. The commanded accelerations are first found from the

optimal guidance algorithm, denote them (Ayco, Azco). The differential game theory

guidance commanded accelerations are then found using the following equations:

Ayc =
Ayco

1−MI
(4.37)

Azc =
Azco

1−MI
(4.38)

MI is defined as a Maneuver Index constant.
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The missile autopilot receives the acceleration commands (Amy, Amz) from the

guidance system and converts them into fin deflection commands in order to steer the

missile.

4.5 Summary and Conclusions

In this chapter, the seeker/navigation system dynamics were described. A block

diagram of the seeker dynamics was given to show how the commanded seeker servo

angles are generated. Also, the seeker model software algorithm was described. The

missile guidance system, which processes range and range-rate infromation from the

seeker/navigation system, was described. the guidance system generated commanded

horizontal and vertical body accelerations to the autopilot. The three guidance algo-

rithms available in this simulation were also discussed. Guidance algorithms included:

proportional, optimal and differential game theory.
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Chapter 5

TARGET MODELING

5.1 Introduction and Overview

This chapter gives a description of the three-degree-of-freedom target model and

the three evasive maneuvers available to the target. For more on the target models

used in this simulations, the reader is referred to [3] and [4]. For more on target

modeling, in general, the reader is referred to [18], [52], [60].

A simple evasive three-degree-of-freedom target model is included in the program

to test the missile’s tracking and steering capabilities. The model used to describe

the target dynamics is discussed in Section 5.2. The target can be made to maneuver

with one of three methods. The target can fly straight with no evasive accelerations,

use the Sheldon turn and climb methods [4] or use the Rigges Vergaz turn and dive

method [3].

5.2 3DOF Target Dynamics

The target used in this study is modeled as a point mass with three degrees of

freedom. The following vector differential equation is used to describe the target’s

response to acceleration commands:

Ȧt =
(Atc − At)

τ
(5.1)

where

At
def
= actual target body acceleration, (Atx , Aty , Atz)

i
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Atc
def
= commanded acceleration, (Ayc, Azc)

τ
def
= response time-constant and is = 0.5

The commanded acceleration, Atc is a function of: estimated time to go, and (sin,

cos) of missile Euler (yaw, pitch, roll) angles. Commanded accelerations are restricted

to a range representing the limits of a pilot’s mental alertness, ±9G’s.

5.3 Straight Flight with No Maneuver.

The simplest option available to the target is to make it to fly in a straight path

with constant velocity. No evasive maneuvers are generated to avoid the oncoming

missile. The commanded target acceleration, Atc = (Atxc , Atyc , Atzc)
i is determined

using the following algorithm:

Algorithm:

Compute the target inertial acceleration, Atc as:

Atxc = 0

Atyc = 0

Atzc = 0

5.4 Sheldon Turn & Climb Maneuver

The Sheldon Turn & Climb algorithm can be visualized as in Figure 5.1; viewed

from the target toward the missile. For missile position in the right half of the target

plane-of-view, the target will turn and climb right. If the missile lies in the left half

of the target plane-of-view, the target will turn and climb left.
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Figure 5.1: Sheldon Evasive Maneuver, Viewed from target-to-missile.

The commanded target inertial acceleration, Atc is calculated using time-to-go

information from the missile autopilot, target Euler angles and the initial missile-

target Aspect angle. The aspect angle measures angle from the inertial LOS vector

to target velocity vector. The target euler angles are defined identically to the missile

Euler angles in Chapter 2. For more on the Sheldon Turn & Climb algorithm, reader

is referred to [4]. The commanded target acceleration Atc is determined using the

following algorithm.

Algorithm:

1. Calculate sine and cosine of commanded target Euler roll angle φ based on

estimated time-to-go and initial Aspect angle. Also, assign a value to Ant the

desired target normal acceleration. g0 is defined in Chapter 2.

If time-to-go > 1, then sin(φ) = 0.707 sign of (sin(Aspect)), cos(φ) = 0.707 and

Ant = 5 g0

Else sin(φ) = 0, cos(φ) = 0.707 and Ant = 9 g0

2. Calculate target total body velocity as Vt =
√

[Vtx
2 + Vty

2 + Vtz
2]

3. Calculate target body velocity in X iY i plane as Vtxy =
√

[Vtx
2 + Vty

2]
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4. Limit desired normal acceleration as a function of local air density (ρ) and Vt,

so target angle of attack, α remains < 30 deg, i.e. 0.0 < At < 0.33 ρ Vt

5. Calculate sine and cosine target Euler pitch angle. sin(θ) = −Vtz
Vt

and cos(θ) =

Vtxy
Vt

6. Calculate sine and cosine target Euler yaw angle. sin(ψ) =
−Vty
Vtxy

and cos(ψ) =

Vtx
Vtxy

7. Compute target inertial acceleration, Atc , where g is as defined in Chapter 2.

(a) Atxc = -Ant (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))

(b) Atyc = -Ant (cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ))

(c) Atzc = -Ant (cos(φ) cos(θ)) - g

5.5 Riggs Vergaz Turn & Dive Maneuver

The Riggs Vergaz Turn & Dive algorithm can be visualized as in Figure 5.2; viewed

from target-to-missile. Missile may be spotted in one of the four quadrants. Missile

positions in the bottom(top) two halves of the target plane-of-view result in the target

turning and climbing(diving) right or left as indicated.
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Figure 5.2: Riggs Vergaz Evasive Maneuver, Viewed from target-to-missile.

For more on the Riggs Vergaz Turn & Dive algorithm, reader is referred to [3].

The commanded target acceleration Atc is determined using the following algorithm.

Algorithm:

1. Calculate sine and cosine of commanded target Euler roll angle φ based on

estimated time-to-go and initial Aspect angle. Also, assign a value to Ant the

desired target normal acceleration. g0 is defined in Chapter 2.

If time-to-go > 1, then sin(φ) = 0.707 sign of (sin(Aspect)), cos(φ) = -0.707 sign

of (sin(Aspect)) and Ant = 9 g0

Else sin(φ) = 0, cos(φ) = -1 and Ant = 9 g0

2. Calculate target total body velocity as Vt =
√

[Vtx
2 + Vty

2 + Vtz
2]

3. Calculate target body velocity in X iY i plane as Vtxy =
√

[Vtx
2 + Vty

2]

4. Limit desired normal acceleration as a function of local air density (ρ) and Vt,

so target angle of attack, α remains < 30 deg, i.e. 0.0 < At < 0.33 ρ Vt
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5. Calculate sine and cosine target Euler pitch angle, sin(θ) = −Vtz
Vt

and cos(θ) =

Vtxy
Vt

6. Calculate sine and cosine target Euler yaw angle, sin(ψ) =
−Vty
Vtxy

and cos(ψ) =

Vtx
Vtxy

7. Compute target inertial acceleration, Atc , where g is as defined in Chapter 2.

(a) Atxc = -Ant (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))

(b) Atyc = -Ant (cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ))

(c) Atzc = -Ant (cos(φ) cos(θ)) - g

5.6 Summary and Conclusions

In this chapter, a 3 degree-of-freedom target model was described. The target

model is included in the program to test the missile’s tracking and steering capabil-

ities. Three target maneuver algorithms were discussed. Each algorithm has been

implemented in the simulation software. The target evasive maneuvers include: (1)

Straight Flight with No Maneuver, (2) the Sheldon Turn and Climb maneuver and

(3) the Riggs Vergaz Turn and Dive maneuver.

134



www.manaraa.com

Chapter 6

BTT MISSILE AUTOPILOT

6.1 Introduction and Overview

In order to acheive adequate performance over the entire envelope of operating

conditions, the autopilot of modern air-to-air tactical missile must be nonlinear [10].

Because of the inherent instabilities associated with missiles, stability augmentation

systems are essential. The autopilot provides the added stability and ensures that

accelerations from the guidance systems are properly followed. More precisely, the

autopilot uses feedback to process the guidance commands and deliver appropriately

coordinated fin commands to the actuators.

Throughout this research, a BTT missile has been considered. BTT missile con-

trol is made more difficult by the high roll rates required to achieve the short response

time necessary for a high-performance missile. The high roll rates increase the aero-

dynamic coupling, which will be discussed here and can lead to inertial cross-coupling

problems. The motivation for using BTT missile control is that the ramjet missile

propulsion requires positive angles of attack and minimal sideslip angles, whch can

be achieved by BTT missiles.

The bank-to-turn steering policy used in this simulation is sometimes referred

to as Preferred Orientation Control (POC) [20]. In other words, it turns like an

airplane. The EMRAAT missile is asymmetrical, see Figures 6.1 and 6.2, making

the bank-to-turn steering policy particularly desirable. The propulsive performance
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of asymmetric missiles or missiles with off-axis air-breathing propulsion systems [20]

may be adversely affected with certain angles of attack or sideslip. A bank-to-turn

steering policy provides minimum sideslip angle.

Figure 6.1: An Asymmetrical EMRAAT Missile

The guidance system sends horizontal and vertical acceleration commands to the

autopilot. The commands are processed and converted into appropriately coordinated

fin commands which are delivered to the actuators.

Body acceleration commands (Ayc, Azc) generated by the guidance system are

converted by the autopilot into commanded fin deflection angles F1c, F2c, F3c and

F4c. The autopilot consists of following components:

1. Acceleration-Roll-Side-Slip Command Generator (BTT LOGIC)

2. Angular Rate Command Generator

3. Mixed Fin Command Generator: p-q-r-thrust/drag
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Figure 6.2: An Asymmetrical EMRAAT Missile Dimesions

4. ILAAT De-Mixer: Four Fin Force Commands to Actuators

5. ILAAT Mixer: Three Effective Aileron, Flapperon, Rudder Controls

Fundamentally, the autopilot is a nonlinear gain scheduled controller designed

using classical control ideas. Two-loop autopilot structure is used here. Innermost

loop is used to control the rate dynamics which are faster and outer loop controls

the sideslip dynamics. BTT missiles ideally should have no Side-Slip. To achieve

a desired orientation, the missile is rolled(banked) so that the plane of maximum

aerodynamic normal force is oriented to the desired direction. Magnitude of the force

is then controlled by adjusting the angle of attack in that plane. Figure 6.3 shows
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the information flow through the autopilot. Body acceleration commands (Ayc, Azc)

generated by the guidance system are converted by the autopilot into commanded

fin deflection angles F1c, F2c, F3c and F4c. Four tail-mounted fins steer the missile.

Effective roll, pitch and yaw deflection angles (δp, δq, δr) are algebraically related to

the fin deflection angles. Each component of the autopilot is described in this chapter.

If we are primarily interested in controlling the missile

then when does a need for nonlinear controller arises?

So when we want our missile to operate over an entire envelope of flight conditions,

the need for a nonlinear autopilot design arises. The gain of the controller should be

scheduled as function of flight conditions for operating across the entire envelope of

flight conditions. Thus the missile needs a nonlinear gain scheduled autopilot. There

are several ways of obtaining a nonlinear controller and one best technique is to use

Incremental Nonlinear Dynamic Inversion. The entire process is explained in detail

in this chapter.

Remainder of this chapter is organized as follows: Section 6.2 discusses the non-

linear dynamic inversion using feedback linearization technique to obtain a nonlinear

controller for the nonlinear missile plant. Also the design of controller gains as a func-

tion of flight condition(Gain Scheduling) is discussed in detail there. Then in Section

6.3, the BTT logic of designing for commanded bank angle for missile is discussed.

Fair amount of information is also provided about the singularity problem that arises

in the design and the ways to correct it. Section 6.4 explains how commanded angu-

lar rates are formed which serve as the reference for Innermost Angular Rate Control

Loop. In the Section 6.5, the design for the commanded control deflections from the
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Figure 6.3: Block diagram of BTT Missile Autopilot

Figure 6.4: Determination of Commanded Roll Angle from Ayc & Azc

angular rate information is discussed. Section 6.6 throws light on how the commanded

control deflections combine together to form the commanded fin deflections. Section

6.7 explains how to realize the effective control deflections from fin deflections from

the actuators. The simulation results using the nonlinear gain scheduled autopilot is

presented in section 6.8. A comprehensive analysis of nonlinear autopilot is done in
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Section 6.9 where the nonlinear autopilot is linearized and analyzed with the missile

linear plant design obtained from Chapter 3. Autopilot is analyzed for its robustness

and performance. Finally Section 6.10 concludes the work done in this chapter.

6.2 Control Law Formulation

The control law used in this research is obtained through Incremental Nonlinear

Dynamic Inversion (INDI) using feedback linearization technique [69]. To apply NDI

technique, it is required to know the full state of the system. If the state is not

known, they can be approximated using nonlinear observer or stochastic state esti-

mator as required. Also the system model has to be known completely to cancel the

nonlinearities. If the system model is partially known, system identification process

has to be done to get a full model knowledge. However system possessing RHP zeros

(nonminimum phase systems) are not a good candidate for the application of NDI

technique to obtain a nonlinear controller. The RHP zero-dynamics will result in a

unstable controller while being inverted to cancel the nonlinearities. Missile accel-

eration control is a nonminimum phase problem. But when we assume symmetrical

airframe by neglecting the inertial cross-coupling elements, it results in a minimum

phase system and ready for NDI technique to be applied. The design of innermost

autopilot rate control is done as following.

Let us recall the rotational dynamics of missile involving inertial and rate components

as below 
L

M

N


com

= Jω̇ + ω × Jω (6.1)
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where,

Jω̇ + ω × Jω = QdpSrefLref (ξ + χu) +G (6.2)

ω =


P

Q

R

, J =


Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

, u =


∆δpc

∆δqc

∆δrc

, χ =


CLδp

0 0

0 CMδq
0

0 0 CNδr



ξ =


CL

CM

CN


act

=


CLββ + CLp P

CMαα + CMq Q

CNββ + CNr R

, G =


0

Ggy

Ggz

, assuming off-diagonal elements

to be 0 in J matrix (due to axis symmetry), J =


Ixx 0 0

0 Iyy 0

0 0 Izz

. Also we know,

Qsl = QdpSrefLref . Performing below INDI algebraic operations below,


L

M

N


com

= Qsl(ξ + χu) +G (6.3)


L

M

N


com

−G = Qsl(ξ + χu) (6.4)


L
Qsl

M
Qsl

N
Qsl


com

−


0

Ggy
Qsl

Ggz
Qsl

 =


CL

CM

CN


com

−


0

−ScxFgz
Qsl

ScxFgy
Qsl

 = ξ + χu (6.5)
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
CL

CM

CN


com

−


0

−ScxAgzMass

Qsl

ScxAgyMass

Qsl

 = ξ + χu (6.6)


CL

CM

CN


com

−


0

−ScxAgzMass

Qsl

ScxAgyMass

Qsl

− ξ =


CL

CM

CN


com

−


0

−ScxAgzMass

Qsl

ScxAgyMass

Qsl

−

CL

CM

CN


act

= χu

(6.7)

u = χ−1



CL

CM

CN


com

−


CL

CM

CN


act

−


0

−ScxAgzMass

Qsl

ScxAgyMass

Qsl


 (6.8)


∆δpc

∆δqc

∆δrc

 =


CLδp 0 0

0 CMδq
0

0 0 CNδr


−1


CL

CM

CN


com

−


CL

CM

CN


act

−


0

−ScxAgzMass

Qsl

ScxAgyMass

Qsl




(6.9)

The main idea of nonlinear dynamic inversion is to cancel the nonlinearities in the

system and use classical control theory ideas to control the resulting linear system.
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So, the below 2 questions are very intuitive to ask.

1. How does the resulting linear system look like?

2. Is it still dependent upon flight conditions?

The following calculation will answer the above questions. Considering the 1st chan-

nel and referring to the equation 3.29, the following analysis can be made. Similar

procedures can be utilized for understanding the other 2 channels.

Ṗ =
L

I∗xx
=
CLQdpSrefLref

I∗xx
=
QdpSrefLref

I∗xx
(CLδpδp + CLPL2V P + CLββ) (6.10)

Rearranging above terms and writing as below,

Ṗ =
QdpSrefLref

I∗xx

(
CLPL2V P + CLββ

)
+
QdpSrefLref

I∗xx

(
CLδpδp

)
(6.11)

This now resembles standard nonlinear state equation as shown below,

Ṗ = f(P, β) + g(x)δp, which looks like, ẋ = f(x) + g(x)u (6.12)

Substituting the control law obtained above from nonlinear dynamic inversion, we

get

Ṗ =
QdpSrefLref

I∗xx

(
CLδp

(
K4(Pc − P )

Qdp

+
CLβ
CLδp

(βc − β)

)
+ CLPL2V P + CLββ

)
(6.13)

Rearranging above terms writing in terms of varying coefficients & remembering that

βc is always set to zero, we get,

Ṗ = −g1 P + g2 Pc (6.14)
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This looks like the following equation, with states, x = [P] and reference, r = [Pc]

ẋ = −A(σ)x+B(σ) r (6.15)

6.2.1 Gain Scheduling of Linear Parameter Varying System

The equation 6.14 looks like a linear parameter varying system, where the “A” &

“B” matrices depend upon the flight conditions such as α, β, Mach & Qdp which are

collectively represented by σ scheduling variable. In designing feedback controllers

for dynamical systems, the controllers are often designed at various operating points

using linearized models of the system dynamics and are scheduled as a function of

a parameter or parameters for operation at intermediate conditions [74]. It is an

approach for the control of nonlinear systems that uses a family of linear controllers,

each of which provides satisfactory control for a different operating point of the sys-

tem. One or more observable variables, called the scheduling variables, are used to

determine the current operating region of the system and to enable the appropriate

linear controller. Here in case of BTT missile control, a set of controllers are designed

at different gridded locations of corresponding parameters such as α, β, Mach & δq.

In brief, gain scheduling is a control design approach that constructs a nonlinear con-

troller for a nonlinear plant by patching together a collection of linear controllers.

These linear controllers are blended in real-time via interpolation in our case through

the use of look up tables. Though the stability is not guaranteed at operating condi-

tions other than the design points, it is a very efficient technique where the parameter

dependency of controllers are large due to increased operating envelopes with more

demanding performance requirements.

Thus referring to 6.14, the system matrix depends upon α, Mach & Qdp. Essentially
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we are looking upon the following pole caused by the A().

1

(s+ QslK4

IxxQdp
− CLP LrefVb

2
)

=
1

(s+ λ)

• As Mach increases, system becomes bigger as RHP pole & RHP zero increase

in magnitude. This can be seen easily by inspecting the λ parameter. Thus

autopilot gets aggressive as mach increases to stabilize the big unstable pole.

• As altitude increases, system becomes smaller as RHP pole & RHP zero decrease

in magnitude. Thus autopilot gets sluggish as altitude increases to stabilize the

small unstable pole.

6.3 BTT Logic

The guidance system acceleration commands, (Ayc, Azc) are initially used to form

a commanded bank angle (φc), commanded angle of attack (αc) [25] and commanded

sideslip angle (βc) as follows:

φc = tan−1

(
Ayc
−Azc

)
(6.16)

αc =

(
‖ac‖ M

Qdp Sref

)
− |(Cz − Czα α)|

|Czα |
(6.17)

βc = 0 (6.18)

where ac = [Ayc Azc] and M is the mass.

Singularity Problem.

For |Ayc| < 35 and |Azc| < 40, φc is set equal to zero. This provides a noise

threshold to prevent roll commands whenever commanded body accelerations are too

small. If Azc = 0, φc is set ±Π
2

depending on the sign of the actual body roll rate P.

This is set to avoid the singularity problem that arises if Azc in equation 6.16 goes to

0 and thus arctangent function becomes infinity in both directions.
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6.4 Angular Rate Command Generator

Rotation rate commands (Pc, Qc, Rc) are formed from Ayc, Azc, φc, β, dynamic

pressure, missile velocity and missile mass using below equations. Pc and Rc are

selected to be proportional to φ and β respectively. Azc is limited, denoted as AzcL,

so that the magnitude of pitch acceleration command (Qc) has a maximum value

near α = 28 degrees. The maximum acceleration command, denoted by Amzmax is

calculated form the current dynamic pressure Qdp and missile mass, m(t) as follows:

Amzmax = 5.25
Qdp

m(t)
(6.19)

If |Azc| > Amzmax , then AzcL is set to Amzmax , else it is left equal to Azc. Below

equations compute the rotation rate commands. The autopilot gains are summarized

in Table 6.1.

Pc = K1(φc − φ) (6.20)

Qc = K2
(AzcL − Amzb)

Qdp

− AzcL
Vb

(6.21)

Rc = K3(βc − β) (6.22)

It is to be noted here that, Amz
b = QsmCz = Qsm (CNα(αc − α) + CNδq δq)
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K1 7

K2 -10

K3 0.5

K4 500

K5 -1.75

K6 -1500

K7 -5000

Table 6.1: Autopilot Gains

6.5 Mixed Fin Command Generator: p-q-r-thrust/drag

The commanded effective fin deflections (δpc , δqc , δrc) model an ideal set of phys-

ical fin deflections which cause the missile to roll, pitch and yaw about its body axes

[20]. The effective squeeze mode δs represents a squeeze or speed-brake mode, which

is used to minimize the axial drag, i.e. no preferred roll, pitch or yaw is induced [20].

After generation of the rate commands (Pc, Qc, Rc), these are used along with

the true body rotation rates (P, Q, R), α, β, Qdp, missile mass as well as a few of

the aerodynamic coefficients to generate effective aileron, elevator and roll commands

(δpc , δqc , δrc)
1 via the following nonlinear control law.

δpc =
K4(Pc − P )

Qdp

+
CLβ
CLδp

(βc − β) (6.23)

δqc = (K5 +
K6

Qdp

)(Qc −Q) +
CMα

CMδq

(αc − α) +
AgzScxMass

QslCMδq

(6.24)

δrc =
K7(Rc −R)

Qdp

+
CNβ
CNδr

(βc − β) +
30PQ− AgyScxMass

QslCNδr
(6.25)

1As we would do for an aircraft
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where,

Qsl = QdpSrefLref (6.26)

Fgy and Fgz are gravitational accelerations in the body frame and Qdp, Sref and

Lref are as defined in the Chapter 2. The gains K4, K5, K6 and K7 are given in Table

6.1. Also produced is a squeeze mode command δsc formed by taking above linear

combination of previous values of (F1C , F2C , F3C and F4C) using 2:

δsc = 0.25(F1C − F2C − F3C + F4C) (6.27)

6.6 ILAAT De-Mixer: Four Fin Force Commands to Actuators

Finally, effective fin deflection commands (δpc , δqc , δrc) and the effective squeeze mode

δs are transformed algebraically into true fin deflection commands (F1, F2, F3, F4)

using below ILAAT (Integrated Logic for Air-to-Air Technology) combination logic

[48] below. The BTT missile used here uses the “×” delta configuration ILAAT

mixing logic as below,



F1C

F2C

F3C

F4C


=



−1 +1 −1 +1

−1 +1 +1 −1

+1 +1 −1 −1

+1 +1 +1 +1





δpc

δqc

δrc

δsc


(6.28)

6.7 ILAAT Mixer: 3 Effective Aileron, Flapperon, Rudder Controls

Finally, the effective control deflections (δp, δq, δr) i.e. aileron, flapperon and

rudder can be realized using ILAAT mixing combination logic as follows,

2Here, the current value of δsc is found by the previous values of (F1C - F2C - F3C + F4C)
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

∆δp

∆δq

∆δr

∆δs


= 0.25



−1 −1 1 1

1 1 1 1

−1 1 −1 1

1 −1 −1 1





∆F1

∆F2

∆F3

∆F4


(6.29)

The above matrix is the inverse of the matrix in the equation ()6.28.

6.8 Nonlinear Autopilot Simulation Results

Table 6.2 shows the flight conditions considered for evaluating the performance of

the new improved nonlinear autopilot design.

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -1000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Missile Guidance Optimal Control

Target Maneuver Sheldon Aspect Angle 0 deg

Table 6.2: Flight Conditions for Nonlinear Autopilot Simulations
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Figure 6.5: Post Flight Analysis - Missile Target Engagement
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Figure 6.6: Post Flight Analysis - α Profile
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Figure 6.7: Post Flight Analysis - β Profile
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Figure 6.8: Post Flight Analysis - Range Profile
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Figure 6.9: Post Flight Analysis - Mach Profile
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Figure 6.10: Post Flight Analysis - Fin 1 Deflection Profile
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Figure 6.11: Post Flight Analysis - Fin 2 Deflection Profile
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Figure 6.12: Post Flight Analysis - Fin 3 Deflection Profile
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Figure 6.13: Post Flight Analysis - Fin 4 Deflection Profile
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Figure 6.14: Post Flight Analysis - Fin 1 Rate Profile
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Figure 6.15: Post Flight Analysis - Fin 2 Rate Profile
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Figure 6.16: Post Flight Analysis - Fin 3 Rate Profile
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Figure 6.17: Post Flight Analysis - Fin 4 Rate Profile
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Figure 6.18: Post Flight Analysis - Air Density Profile
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Figure 6.19: Post Flight Analysis - SOS Profile
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Figure 6.20: Post Flight Analysis - Dynamic Viscosity Profile
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Figure 6.21: Post Flight Analysis - Kinematic Viscosity Profile
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Figure 6.22: Post Flight Analysis - Acceleration in Y Direction Profile
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Figure 6.23: Post Flight Analysis - Acceleration in Z Direction Profile
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Figure 6.24: Post Flight Analysis - Aileron Profile
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Figure 6.25: Post Flight Analysis - Elevator Profile
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Figure 6.26: Post Flight Analysis - Rudder Profile
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Figure 6.27: Post Flight Analysis - Roll Angle Profile
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Figure 6.28: Post Flight Analysis - Role Rate Profile
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6.9 Autopilot Linearization

Linearizing the autopilot around a flight condition will definitely give an idea

about the range where the linear autopilot can approximate the nonlinear autopilot.

6.9.1 Assumptions about Steady Flight Conditions

The following assumptions are made for linearizing the autopilot routines.

1. The steady trimmed flight condition is one of uniform translational motion, i.e.,

where the equilibrium angular rates are zero. Thus P ∗ = Q∗ = R∗ = 0.

2. One of the requirements of the BTT missile autopilot is to minimize the sideslip

angle during flight. Thus, V ∗ = 0.

3. The bank angle, φ and the yaw angle, ψ are taken to be zero.

6.9.2 Innermost Loop

Figure 6.29: Block Diagram of Autopilot Innermost Loop

Recalling the rate control loop equations,

δpc =
K4(Pc − P )

Qdp

+
CLβ
CLδp

(βc − β) (6.30)
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δqc = (K5 +
K6

Qdp

)(Qc −Q) +
CMα

CMδq

(αc − α) +
AgzScxMass

QslCMδq

(6.31)

δrc =
K7(Rc −R)

Qdp

+
CNβ
CNδr

(βc − β) +
30PQ− AgyScxMass

QslCNδr
(6.32)

δsc = 0.25(F1C − F2C − F3C + F4C) (6.33)

The above equations (6.30 - 6.32) can be written in terms of perturbed small scall

error signals as follows

∆δpc = a1∆ep + a2∆eβ (6.34)

∆δqc = a3∆eq + a4∆eα (6.35)

∆δrc = a5∆er + a6∆eβ (6.36)

∆δsc = 0 (6.37)

where δsc is a constant and so its perturned value ∆δsc vanishes. Also ∆ep
def
= Pc−P ,

∆eq
def
= Qc −Q and ∆er

def
= Rc −R and a1 = K4

Qdp
, a2 =

CLβ
CLδp

, a3 =
(
K5 + K6

Qdp

)
, a4 =

CMα
CMδq

, a5 = K7

Qdp
, a6 =

CNβ
CNδr

Writing above equations in matrix form.



∆δpc

∆δqc

∆δrc

∆δsc


=



a1 0 0 0 a2

0 a3 0 a4 0

0 0 a5 0 a6

0 0 0 0 0





∆ep

∆eq

∆er

∆eα

∆eβ


(6.38)

combining this with the ILAAT de-mixer, we get fin commands as follows
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

∆F1C

∆F2C

∆F3C

∆F4C


=



−1 +1 −1 +1

−1 +1 +1 −1

+1 +1 −1 −1

+1 +1 +1 +1





∆δpc

∆δqc

∆δrc

∆δsc


(6.39)

Using equation (6.38) in equation (6.39), we get



∆F1C

∆F2C

∆F3C

∆F4C


=



−1 +1 −1 +1

−1 +1 +1 −1

+1 +1 −1 −1

+1 +1 +1 +1





a1 0 0 0 a2

0 a3 0 a4 0

0 0 a5 0 a6

0 0 0 0 0





∆ep

∆eq

∆er

∆eα

∆eβ


(6.40)

Taking c1 = ωf
2 and c2 = −2ζfωf , the actuator dynamics explained in section 2.6

can be re-written in matrix format with perturbed states as below,∆Ḟi

∆F̈i

 =

 0 1

−c1 c2


∆Fi

∆Ḟi

+

 0

c1

[∆Fic] (6.41)

where i = 1...4. Now expanding above equation for all 4 fins, we get



∆Ḟ1

∆F̈1

∆Ḟ2

∆F̈2

∆Ḟ3

∆F̈3

∆Ḟ4

∆F̈4



=



0 1 0 0 0 0 0 0

−c1 c2 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −c1 c2 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −c1 c2 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −c1 c2





∆F1

∆Ḟ1

∆F2

∆Ḟ2

∆F3

∆Ḟ3

∆F4

∆Ḟ4



+



0 0 0 0

c1 0 0 0

0 0 0 0

0 c1 0 0

0 0 0 0

0 0 c1 0

0 0 0 0

0 0 0 c1





∆F1c

∆F2c

∆F3c

∆F4c


(6.42)

Representing above matrices with symbols below such as
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B1 =



0 0 0 0

c1 0 0 0

0 0 0 0

0 c1 0 0

0 0 0 0

0 0 c1 0

0 0 0 0

0 0 0 c1



, B2 =



−1 +1 −1 +1

−1 +1 +1 −1

+1 +1 −1 −1

+1 +1 +1 +1


, B3 =



a1 0 0 0 a2

0 a3 0 a4 0

0 0 a5 0 a6

0 0 0 0 0



Acon =



0 1 0 0 0 0 0 0

−c1 c2 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −c1 c2 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −c1 c2 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −c1 c2



, ∆xcon =



∆F1

∆Ḟ1

∆F2

∆Ḟ2

∆F3

∆Ḟ3

∆F4

∆Ḟ4



, ∆ucon =



∆ep

∆eq

∆er

∆eα

∆eβ



Using Bcon = B1 B2 B3, ignoring ∆ for notational convenience and substituting

equation (6.40) in equation (6.42) we get,

ẋcon = Aconxcon +Bconucon (6.43)

We need the four fin deflections as output and they are available as states. Thus

output equation can be formed as follows

yfin = Cfinalxcon +Dfinalucon (6.44)
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where Yfin =



F1

F2

F3

F4


, Cfinal =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0


and Dfinal = zeros(4,5)

Using ILAAT mixing logic explained in section 6.7, the effective aileron, elevator and

rudder deflections can be retrieved using below operation.

δp

δq

δr

δs


= 0.25



−1 −1 1 1

1 1 1 1

−1 1 −1 1

1 −1 −1 1





∆F1

∆F2

∆F3

∆F4


(6.45)

Taking Γ = 0.25



−1 −1 1 1

1 1 1 1

−1 1 −1 1

1 −1 −1 1


= B2

−1, ycon =



δp

δq

δr

δs


, equation (6.45) becomes

ycon = Γyfin (6.46)

Using equation (6.46) in equation (6.44), and Ccon = ΓCfinal, Dcon = ΓDfinal we get

the final innermost rate controller state space as follows,

ẋcon = Aconxcon +Bconucon

ycon = Cconxcon +Dconucon

(6.47)
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6.9.3 Intermediate Loop

Figure 6.30: Block Diagram of Autopilot Intermediate Loop

Recalling the rate command generator equations which is the intermediate loop con-

troller in this case. The error in α & β signals have to be passed on to the innermost

loop.

Pc = K1(φc − φ)

Qc = K2
(AzcL − Amz)

Qdp

− AzcL
Vb

Rc = K3(βc − β)

(6.48)

Rewriting above equation interms of error signals and taking K11 =
(
−K2 Sref CNα

Mass

)
,

defining error signals eφ = φc - φ, eα = αc - α and eβ = βc - β.

Pc = K1eφ

Qc = K11eα

Rc = K3eβ

(6.49)

Writing above equations in matrix form we get,
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

Pc

Qc

Rc

eα

eβ


=



K1 0 0

0 K11 0

0 0 K3

0 1 0

0 0 1




eφ

eα

eβ

 (6.50)

Thus the final state space equation of intermediate controller can be written as follows

Yinter = Dinter Uinter (6.51)

where Yinter =



Pc

Qc

Rc

eα

eβ


, Dinter =



K1 0 0

0 K11 0

0 0 K3

0 1 0

0 0 1


and Uinter =


eφ

eα

eβ

.

Missile Linear Autopilot Frequency Responses - Altitude Varying
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Figure 6.31: Ki − 1st Channel Frequency Response - Altitude Varying

10
1

10
2

10
3

−35

−30

−25

−20

−15

−10

−5

0

5

10

K
i
 Frequency Response − Error

q
 to Elevator

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

b)

 

 

Altitude = 40 kft
Altitude = 50 kft

Figure 6.32: Ki − 2nd Channel Frequency Response - Altitude Varying
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Figure 6.33: Ki − 3rd Channel Frequency Response - Altitude Varying
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Figure 6.34: Open Loop Channel 1 Frequency Response - Altitude Varying
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Figure 6.35: Open Loop Channel 2 Frequency Response - Altitude Varying
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Figure 6.36: Open Loop Channel 3 Frequency Response - Altitude Varying
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Figure 6.37: Inner Loop Complementary Sensitivity Pc vs P - Altitude Varying
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Figure 6.38: Inner Loop Complementary Sensitivity Qc vs Q - Altitude Varying
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Figure 6.39: Inner Loop Complementary Sensitivity Rc vs R - Altitude Varying
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Figure 6.40: Intermediate Loop φ Channel Sensitivities - Altitude Varying
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Figure 6.41: Intermediate Loop α Channel Sensitivities - Altitude Varying
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Figure 6.42: Intermediate Loop β Channel Sensitivities - Altitude Varying

All the above figures, 6.31 - 6.42, exhibit the following behaviour and the reason
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is explained below.

• As we go up, the air gets thinner.

• Missile fins can‘t operate efficiently at higher altitude because of the aerody-

namic properties there.

• Thus to pitch up or down, more than the elevator fin deflection, it is the angle

of attack that is more responsible for creating the required lift at such higher

altitudes.

• The missile system as a whole becomes smaller as RHP pole & RHP zero de-

crease in magnitude as altitude increases because of lower dynamic pressure.

Thus less bandwidth is required to to stabilize the missile. This the reason,

why BTT missiles (equivalent to passenger aircrafts) operate at cruise control

mode at higher altitude.

• Thus, it makes sense to have the autopilot to operate less aggressive as the

altitude increases.

• Figures 6.37-6.39 corresponding to innermost loop sensitivities and Figures 6.40-

6.42 corresponding to intermediate loop sensitivities show that their bandwidths

decrease (becomes less aggressive, i.e. sluggish) as altitude increases.

• Similar behaviour is exhibited by the controller and open loop (both pertaining

to innermost loop) frequency responses. The reader is referred to the figures

6.31 - 6.36 for observing the above said behaviour.

• It is very important to note here that, while the innermost rate control loop

operates at a bandwidth of about 10 rad
sec

(on all 3 channels), the intermediate

control loop operates at an bandwidth of about 1, 0.1 & 0.3 rad
sec

on φ, α &
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β channels respectively which is about one decades slower than the innermost

loop. Innermost loop faster than the intermediate loop ensures that the overall

system is stable.

• α channel shows very less bandwidth, probably that is the reason why αc design

was omitted in the earlier designs as it does not bring in significant contribution

to the overall performance. Research was conducted which shows that missile

performance with the new αc design and without it (old) design, showed no

significant improvements. The new αc was included because it is very important

from a BTT missile point of view as BTT missile maneuvers by banking to

desired orientation first and then angle of attack is varied in that normal plane

to achieve the desired orientation while stabilizing the roll missile. The author

feels this should need more investigation as to why this behaviour is exhibited.

Missile Linear Autopilot Frequency Responses - Mach Varying
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Figure 6.43: Ki − 1st Channel Frequency Response - Mach Varying
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Figure 6.44: Ki − 2nd Channel Frequency Response - Mach Varying
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Figure 6.45: Ki − 3rd Channel Frequency Response - Mach Varying
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Figure 6.46: Open Loop Channel 1 Frequency Response - Mach Varying
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Figure 6.47: Open Loop Channel 2 Frequency Response - Mach Varying
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Figure 6.48: Open Loop Channel 3 Frequency Response - Mach Varying
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Figure 6.49: Inner Loop Complementary Sensitivity Pc vs P - Mach Varying
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Figure 6.50: Inner Loop Complementary Sensitivity Qc vs Q - Mach Varying
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Figure 6.51: Inner Loop Complementary Sensitivity Rc vs R - Mach Varying
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Figure 6.52: Intermediate Loop φ Channel Sensitivities - Mach Varying
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Figure 6.53: Intermediate Loop α Channel Sensitivities - Mach Varying
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Figure 6.54: Intermediate Loop β Channel Sensitivities - Mach Varying

All the above figures, 6.43 - 6.54, exhibit the following behaviour and the reason

is explained below.

• We know from figure 3.47, that Mach ∝ 1
h
.

• The missile system as a whole becomes bigger as RHP pole & RHP zero increase

in magnitude as Mach increases because of higher dynamic pressure. Thus more

bandwidth is required to to stabilize the missile.

• Thus, it makes sense to have the autopilot to operate more aggressive as the

Mach increases, mainly because the unstable pole grows in magnitude.

• Figures 6.49-6.51 corresponding to innermost loop sensitivities and Figures 6.52-

6.54 corresponding to intermediate loop sensitivities corresponding to the longi-

tudinal variables show that their bandwidths increase (becomes more aggressive,

i.e. faster) as Mach increases.
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• Similar behaviour is exhibited by the controller and open loop (both pertaining

to innermost loop) frequency responses corresponding to the longitudinal vari-

ables. The reader is referred to the figures 6.43 - 6.48 for observing the above

said behaviour.

• It is very important to note here that, while the innermost rate control loop

operates at a bandwidth of about 10 rad
sec

(on all 3 channels), the intermediate

control loop operates at an bandwidth of about 0.5, 0.01 & 0.5 rad
sec

on φ, α

& β channels respectively which is about roughly one decades slower than the

innermost loop. Innermost loop faster than the intermediate loop ensures that

the overall system is stable.

6.10 Summary and Conclusions

This chapter has provided a comprehensive case study for our BTT Missile Au-

topilot. After the brief explanation of control law formulation using Incremental

Nonlinear Dynamic Inversion technique, the nonlinear autopilot was explained, fol-

lowed by its linearization and its analysis. The analysis show that the autopilot is

very robust and properly follows the signal commands issued.
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Chapter 7

NUMERICAL INTEGRATION

7.1 Introduction and Overview

Within this chapter, we address obtaining approximate solutions for the differ-

ential equations governing missile dynamics using numerical integration methods.

Differential equations of first order can be solved using variety of mathematical tools.

But for solving the equations using different initial conditions and real time inputs, we

need a computer generated approximate solution. This is where numerical integration

techniques, in particular Runge-Kutta methods come handy. Motivational examples

from [68] are examined. Expecting a miss distance within the blast radius of the

missile [70], nominal step size selection for a desired level of accuracy is demonstrated

using missile target engagement geometry simulations.

Choosing an ideal step size for simulation is really important. Smaller the step

size, more frequent the decisions are made about the next move. Given a small step

size, missile moves a very small distance between each step towards the target. Sim-

ilarly the larger step size involves less frequent decision making and missile moves

to a big distance between each step towards the target. Going by the intuition, we

normally prefer a smaller step size as we need a higher level of accuracy. Accuracy

in this context refers to the final miss distance between missile and target. Conven-

tional medium range missiles carrying high explosive warhead have blast radius of

about 20ft [70]. This gives us an excellent information about what final miss distance

we are looking for from our simulation. Smaller step size enjoys another benefit of

184



www.manaraa.com

not loading the actuators to perform till their saturation level continuously. This is

evident from both the fin actuator and fin rate responses provided in this chapter.

To avoid making baby steps towards the target, we try to increase the step size

and see where it starts to behave bad. The highest value of step size that gives us

minimum miss distance without loading the actuators much is the ideal one. Trying

an higher step size might even make a missile to miss the target initially and try hard

enough to intercept it later. Given this, during such an awkward situation caused by

larger step size, the autopilot is forced to make the actuators to work in the saturated

level contantly. Thus engagement geometry of the missile target engagement is not

smooth, making the life of the missile hard. The key goal of this chapter is to explain

about the trade off involved in selection of ideal step size for integration.

Remainder of this chapter is organized as follows: In Section 7.2 all four Runge-

Kutta methods are explained with an example and results are tabulated. Then step

size selection through engagement geometry is explained in Section 7.3. Finally Sec-

tion 7.4 summarizes and concludes the work explained in this chapter.

7.2 Runge-Kutta(RK) Integration Methods

Lets consider an initial value problem,

f(t, y) =
dy

dt
= y − t2 + 1 (7.1)

where t0 = 0 and y(t0) =y0 = 0.5 are the initial conditions considered. We need to

solve for y between 0 ≤ t ≤ 2. Let “h” be the step size. Analytically solving this

problem we get,

y(t) = t2 + 2t+ 1− et

2
(7.2)
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y(t=2) = 5.305471950534675 as the exact solution. In normal integration with end-

points, we just use the end points of interval, and we dont know how the system

behaves in between. Here, integration is carried out in small step size, which cap-

tures the behavior of system exactly over the entire time interval. This inherently

tells us to keep the step size as minimum as possible to get a better solution. But

decreasing the step size will increase the computational effort. Thus, a trade-off has

to be observed between the two in order to get a desired level of accurate solution.

Depending upon the importance given to the slope of function at different points in

the interval, there are different types of methods available. Methods discussed below

are Runge Kutta - 1st, 2nd, 4th&Fehlberg.

7.2.1 Runge-Kutta 1st Method

Also called as the Eulers method of integration, solution is given by equation 7.3

given below,

y(t+ h) = y(t) + h
dy(t, y)

dt
(7.3)

The next value is found out using value of function at that instant of time and deriva-

tive at that instant of time. The error between actual solution and approximated

solution at all instances is relatively high in this method. Solving above example

problem with this method we get 5.3001 as the final solution. Also, the error value is

5.3055 - 5.3001 = 0.0054. This is a high value of error given the accuracy of computers

today. So this approximation is acceptable to certain extent.

7.2.2 Runge-Kutta 2nd Method

Demanding need for more accuracy, we go for 2nd method, where slope at mid-

point of the interval is considered for better approximation. The solution is given by
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equation 7.4 given below,

y(t+ h) = y(t) + k2

k1 = h
dy(t, y)

dt

k2 = h
dy(t+ 0.5h, y + k1)

dt

(7.4)

Solving above example problem with this method, we get w = 5.3196 as the final

solution. The error value between approximate solution and true sollution is still

high. So this approximation is also acceptable only to a certain extent.

7.2.3 Runge-Kutta 4th Method

This is also called classical Runge-Kutta method. This takes into account the slope

of function at beginning, at the midpoint and at the end of interval to approximate

the solution. Taking “h” to be the step size such that ti = t0 + ih, the solution is

given by equation 7.5 given below,

wi ≈ y(ti), where

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4)

k1 = hf(ti, wi)

k2 = hf

(
ti +

h

2
, wi +

k1

2

)
k3 = hf

(
ti +

h

2
, wi +

k2

2

)
k4 = hf(ti + h,wi + k3)

(7.5)

Solving above example problem with this method, we get 5.3055 as the final

solution, error value between approximated solution and exact solution is negligible.

We now know that this method is very good, only drawback being going through

same step size for each and every iteration before settling down.
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7.2.4 Adaptive Step Size - Runge-Kutta-Fehlberg Method

The error is compared with a threshold value at every step. If it is less than(more

than) the threshold, we increase(decrease) the step size and re-do the current step

again. This way, instead of going through same step size throughout the interval, we

move forward intelligently adapting the step size. The solution is given by equation

7.6 given below,

R =
1

h
|w̃i+1 − wi+1|

wi+1 = wi +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5

w̃i+1 = wi +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6

k1 = hf(ti, wi)

k2 = hf

(
ti +

h

4
, wi +

k1

4

)
k3 = hf

(
ti +

3h

8
, wi +

3

32
k1 +

9

32
k2

)
k4 = hf

(
ti +

12h

13
, wi +

1932

2197
k1 +

7200

2197
k2 +

7296

2197
k3

)
k5 = hf

(
ti + h,wi +

439

216
k1 − 8k2 +

3680

513
k3 +

845

4104
k4

)
k6 = hf

(
ti +

h

2
, wi −

8

27
k1 + k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

)
δ = 0.84

( ε
R

) 1
4

(7.6)

if R ≤ ε Keep w as the current step

solution and move to the

next step with the step size

δh

if R > ε recalculate the current step

with the step size δh
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Solving above example problem with this method, we get 5.3055 as the final

solution, which was obtained in very less amount of steps. The error is as usual very

negligible like RK-4 method since internally this method used RK4 for approximation.

Integration

Method

Error between True

and Approximate

Solutions

Computational

Effort

No. of Itera-

tions

RK-1 High Very Less More

RK-2 Considerably Low Less More

RK-4 Very Negligible High More

RK-Fehlberg Very negligible Very high Very Less

Table 7.1: Comparison of Runge-Kutta Integration Methods

7.3 Nominal Step Size Selection using Engagement Geometry Analysis

Optimal step size will enable a smooth flight for missile without loading the ac-

tuators heavily and it will enable the missile to intercept the target with excellent

accuracy. Here in this research, the target maneuvered using the sheldon mode while

the missile tried intercepting it using optimal guidance and for the same initial flight

conditions given by Table 7.2, the step size was varied to see where the simulation

started to fail. This will give us an upper bound on the step size. See Figure 7.1.

Similarly even smaller step sizes were tried and they gave us satisfactory results. See

Figure 7.2. But they were having longer flight time because the missile was making

baby steps towards the target. So to fasten the decision process and that too with

expected accuracy, the optimal step size was selected which resulted in both fast and

accurate simulations.
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Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -1000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Azimuth Angle 0 deg Aspect Angle 0 deg

Table 7.2: Flight Conditions for Miss Distance vs Integration Step Size
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Figure 7.1: Miss Distance vs Integration Step Size
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Figure 7.2: Zoomed in Figure 7.1

Engagement Geometry. Referring to Figures 7.3 and 7.5, it is evident that smaller

step sizes gave a smooth engagement geometry, while larger step sizes made the life

of missile difficult. By careful observation of Figures 7.3 and 7.4, it can be easily seen

that as the step size grows larger, the missile starts to miss the target resulting in

a bad simulation. It is important to emphasize here that a bad step size will result

only in a bad simulation resulting in the missile missing the target, while it does not

imply that the missile does not have the capability to hit the target. While operated

with a big step size, the missile tries to the best of its abilities to make sharp turns

to intercept the target even if it misses the target at initial ranges. While doing

sharp turns, the missile fin actuators hit their saturation levels frequently, which is

obviously not a good condition for fin actuators. The reader is referred to the Figures

7.7 and 7.8 to visualize the phenomenon explained above.
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Figure 7.3: Engagement Geometry 3D Plot for different step sizes
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Figure 7.4: Engagement Geometry 2D Plot for different step sizes
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Figure 7.5: Engagement Geometry 3D Plot showing Step Size Failure
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Figure 7.7: Fin Deflection Rate for Smaller Step Size
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Figure 7.8: Fin Deflection Rate for Bigger Step Size
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For the above initial flight conditions, step size of 0.005 would be very optimal which

can be seen through the Figure 7.1. This optimal step size is expected to vary for

different range and other flight conditions.

7.4 Summary and Conclusions

This chapter gives a brief idea about the proper usage of numerical integration in

complex simulation like missile guidance control systems. The four different Runge-

Kutta methods were explained using a mathematical example and their merits and

demerits were tabulated. Then the procedure to select the optimal step size for numer-

ical integration was explained using the engagement geometry analysis. Effect of bad

step size selection on actuators hitting their saturation levels were clearly explained.

Thus the purpose of the chapter was to provide a solid foundation on the numerical

integration methods used to numerically approximate the complex, nonlinear missile

and target differential equations during the missile target engagement.

195



www.manaraa.com

Chapter 8

MISS DISTANCE ANALYSIS

8.1 Introduction and Overview

The purpose of this chapter is to illustrate the hunting capabilities of the BTT

missile considered in this research. Given a thrust profile and fixed initial conditions,

the analysis made in this chapter will answer how good a missile will be in intercepting

a target within its killing range. The high fidelity environment used throughout the

simulation used in this research is employed to study the miss distance profile with

respect to different missile/target engagement parameters as described in the relevant

GNC textbooks [51] and [52]. Also the work done in this chapter will lay a basic

foundation and serve as a perfect motivation factor for kill zone estimation, which

is explained in brief in the Chapter 9. Conventional warheads carried by the missile

have a circular blast radius of about 20 ft [70]. Thus any simulation resulting in a

final miss distance less than 20 feet is taken granted as a hit and miss distance profile

is obtained as per this logic. Each section in this chapter will have information about

the flight conditions considered, the result and its inference. The chapter is organized

as follows: Section 8.2 will briefly discuss the miss distance profile change when

the proportional gain is varied. Here the missile is assumed to possess Proportional

Navigation guidance law to intercept the target. Section 8.3 analyses the effect of

altitude variation on the miss distance profile. Section 8.4 throws light on effect

of varying the maximum acceleration capability of the missile over the final miss

distance achieved. Section 8.5 discusses the effect of initial missile speed on the final

miss distance profile. Section 8.6 establishes a brief idea about how the miss distance
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profile varies as the target is made to maneuver more and more. Missile is assumed

to possess Differential Game Theory guidance to intercept the target here. Section

8.7 shows how the miss distance varies when the target’s orientation with respect

to the missile measured in terms of Aspect. Section 8.8 elaborates how the miss

distance varies when the initial range is varied. This motivates the work done in the

entire Chapter 9. Finally Section 8.9 summarizes and concludes the work done in

this chapter and gives a rough idea about estimating the missile’s capabilities using

above analyses.

8.2 Miss Distance Dependence on Proportional Gain

Throughout the simulation conducted here in this section, the missile is made

to possess proportional navigation guidance and all the three target maneuvers are

tested by varying the proportional gain. The initial flight conditions considered are

shown in the Table 8.1.

Flight Conditions Considered:

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -1000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Integration Method RK-4

Guidance Law Proportional Aspect Angle 135 deg

Table 8.1: Flight Conditions for Miss Distance vs Proportional Gain
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Figure 8.1: Miss Distance vs Proportional Gain
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Figure 8.2: Zoomed in Figure 8.1

Inferences.

• From Figures 8.1 and 8.2, it is clearly evident that the miss distance is higher
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when the proportional gain is too small and the miss distance reaches the min-

imum value which is unique for different flight conditions.

• Beyond the minimum, the miss distance increases slowly as we increase the gain

and this behaviour persists irrespective of the target maneuver.

• It is intuitive that if the proportional gain is very small, the missile will respond

slowly and will not be able to catch the target and similarly if the gain is big,

the outer guidance loop will become unstable due to the high frequency seeker

dynamics.

• It is also observed that these changes are observed only when the initial altitude

is small. At higher altitudes, the miss distance essentially becomes independent

of the gain.

• The reader is referred to the [17] for further insight and information about this

section.

8.3 Miss Distance Dependence on Initial Engagement Altitude

Throughout the simulation conducted here in this section, the missile is made

to possess different guidance laws and all the three target maneuvers are tested by

varying the initial engagement altitude. The initial flight conditions considered are

shown in the Table 8.2.

Flight Conditions Considered:
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Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Maneuver Index 0.25

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Intgration Method RK-4

Proportional Gain 2.1 Aspect Angle 135 deg

Table 8.2: Flight Conditions for Miss Distance vs Engagement Altitude
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Figure 8.3: Miss Distance vs Engagement Altitude - No Maneuver
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Figure 8.4: Miss Distance vs Engagement Altitude - Sheldon Maneuver
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Figure 8.5: Miss Distance vs Engagement Altitude - Riggs Vergaz Maneuver
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Inferences.

• As Altitude increases, the miss distance increases.

• It is intuitive that the air density decreases with increasing altitude, one might

expect that the missile fins lose their aerodynamic effectiveness at higher alti-

tudes.

• Figures 8.3 - 8.6 supports our intuitive inference about the inability of the fins

to control the missile in the thin air of the upper atmosphere.

• The reader is referred to the [17] for further insight and information about this

section.

8.4 Miss Distance Dependence on Missile Maximum Acceleration

Throughout the simulation conducted here in this section, the missile is made to

possess different guidance laws and all the three target maneuvers are tested by vary-
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ing the initial maximum missile acceleration. The initial flight conditions considered

are shown in the Table 8.3.

Flight Conditions Considered:

Flight Parameter Value Flight Parameter Value

Proportional Gain 2.1 Maneuver Index 0.25

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Altitude -1000 ft Aspect Angle 135 deg

Table 8.3: Flight Conditions for Miss Distance vs Missile Maximum Acceleration
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Figure 8.7: Miss Distance vs Missile Max. Acceleration - No Maneuver
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Figure 8.8: Zoomed in Figure 8.7
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Figure 8.9: Miss Distance vs Missile Max. Acceleration - Sheldon Maneuver
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Figure 8.10: Zoomed in Figure 8.9
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Figure 8.11: Miss Distance vs Missile Max. Acceleration - Riggs Vergaz Maneuver
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Figure 8.12: Zoomed in Figure 8.11
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Figure 8.13: Miss Distance vs Missile Max. Acceleration - All Maneuvers
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Figure 8.14: Zoomed in Figure 8.13

Inferences.

• As missile maximum acceleration increases, the miss distance decreases.

• This goes well with our intuition that given an higher acceleration advantage for

the missile over the target, it is easier for the missile to track down the target.

• Figures 8.7 - 8.14 support our inferences.

• It is also seen that irrespective of the different target maneuver and different

missile guidance laws, the above said conjecture seems to hold true.

8.5 Miss Distance Dependence on Initial Missile Mach

Throughout the simulation conducted here in this section, the missile is made to

possess proportional guidance law and the target has no maneuver and this scenario

is tested by varying the initial missile Mach. The initial flight conditions considered

are shown in the Table 8.4.
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Flight Conditions Considered:

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -1000 ft

Integration Method RK-4 Target Range 10000 ft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Target Mode Const. Ve-

locity

Aspect Angle 135 deg

Table 8.4: Flight Conditions for Miss Distance vs Missile Mach
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Figure 8.15: Miss Distance vs Initial Missile Mach

Inferences.

• It is intuitive that the missile will track its target if it is given an higher initial

velocity.
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• But it is also a point of interest to note here that, if the missile initial velocity

is very big, e.g. here in our case if it is bigger than 2.15 for the above flight

condition considered, the missile permanenetly misses the target because it had

travelled probably in the wrong direction initially with higher velocity.

• Missile realizes that the it cannot track down its target as the range keeps on

increasing.

• That is not captured here in Figure 8.15 as miss distance is a very big number

in those cases.

• This scenario can be thought analogous to a condition where our integration

step size is big.

• Reader is referred to the Section 7.3 in Chapter 7.

8.6 Miss Distance Dependence on Target Maneuver

Throughout the simulation conducted here in this section, the missile is made

to possess differential game theory guidance and all the three target maneuvers are

tested by varying the proportional gain. The initial flight conditions considered are

shown in the Table 8.5.

Flight Conditions Considered:
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Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -1000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Integration Method RK-4 Aspect Angle 135 deg

Table 8.5: Flight Conditions for Miss Distance vs Target Maneuver
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Figure 8.16: Miss Distance vs Target Maneuver
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Figure 8.17: Zoomed in Figure 8.16

Inferences.

• From Figure 8.16 & 8.17, it is clear that as the target maneuvers more, it is

difficult for the missile to intercept it.

• The degree of target maneuverability is measured using an unitless quantity

called “Target Maneuver Index” or simply “Maneuver Index(MI)”. We know

that from equation 4.37.

• It is clear that as long as Maneuver Index is small, the differential game thoery

guidance is going to behave well as smaller MI indicates target maneuvering

very less.

• But as MI approaches 1, its singular point, the miss distance starts to increase.

• Thus, for all values of MI > 1, which indicates the target maneuvering more,

the miss distance is bad (i.e. the missile misses the target) irrespective of the

target’s intelligence.

211



www.manaraa.com

• This behaviour is excellently captured in the Figure 8.16.

• For more information on this concept, the reader is referred to the relevant GNC

texts [51] and [52].

8.7 Miss Distance Dependence on Target Aspect

Throughout the simulation conducted here in this section, the missile is made to

possess proportional guidance and the target doesn’t maneuver. This flight condition

is tested by varying the initial target aspect with respect to the missile. The initial

flight conditions considered are shown in the Table 8.6.

Flight Conditions Considered:

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -1000 ft

Initial Missile Mach 0.8999 Target Range 1-10 kft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Target Mode Const. Ve-

locity

Integration Method RK-4

Table 8.6: Flight Conditions for Miss Distance vs Target Aspect
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Figure 8.18: Miss Distance vs Target Aspect - Range = 1 kft, 2 kft
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Figure 8.19: Zoomed in Figure 8.18

213



www.manaraa.com

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

Aspect Angle (deg)

M
is

s 
D

is
ta

nc
e 

(f
t)

Miss Distance vs Aspect Angle

 

 

Range = 3000 ft
Range = 4000 ft
Range = 6000 ft
Range = 8000 ft
Range = 10000 ft

Figure 8.20: Miss Distance vs Target Aspect - Range = 3 kft - 10 kft

Inferences.

• For a given initial target range, a certain range of aspect angles would be fa-

vorable for a missile.

• Consider a missile having a target coming towards it at an Aspect of 180 deg

which is the most favorable target orientation for the missile to hit it exactly.

• This favorable aspect varies with the range.

• A target which is at a closer range will not result in a hit if it is oriented at as

aspect of 180, as missile might miss it at the very initial stage of its flight.

• Instead, 0 degree aspect in this case would result in an hit.

• Similarly a farther target if it is oriented at 180 Aspect (read it as “Head-on

collision” case or coming towards the missile to get killed !) will result in a hit
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condition, while 0 deg aspect would clearly result in an miss since missile is not

guaranteed to succeed in a tail end chase with target being very far.

• This phenomenon is clearly captured in Figures 8.18 - 8.20.

• As we increase the range, all aspect angles from 0 to 180 degree is expected to

give an hit.

• But going by the basic Physics, if we go on increase the range, there will be a

point where missile will start to miss the target.

• This is explained in below Section 8.8 and this also motivates the work done in

the Chapter 9.

• Thus Aspect is a very important parameter in missile-target engagement and it

depends upon initial target range.

8.8 Miss Distance Dependence on Initial Target Range

Throughout the simulation conducted here in this section, the missile is made

to possess proportional guidance with proportional navigation gain of about 2.3 for

both the channels and the target doesn’t maneuver. This flight condition is tested by

varying the initial target range with respect to the missile. The initial flight conditions

considered are shown in the Table 8.7. Aspect of 135 degrees is considered here.

Flight Conditions Considered:

215



www.manaraa.com

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -1000 ft

Initial Missile Mach 0.8999 Guidance Law Proportional

Initial Target Mach 0.8999 Time Constant 0.5 sec

Target Mode Const. Ve-

locity

Aspect Angle 135 deg

Table 8.7: Flight Conditions for Miss Distance vs Target Range
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Figure 8.21: Miss Distance vs Initial Target Range
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Figure 8.22: Zoomed in Figure 8.21

Inferences.

• For the given aspect, from Figures 8.21 & 8.22 reveal that smaller ranges end

up with high miss distance as missile might initially move in wrong direction

and miss the target completely.

• As range increases, missile can catch up with target’s range and its orientation

and thus our miss distance in those range is very small.

• Finally as the target is far away, missile will start to run out of fuel while

catching up with the target and misses it.

• This clearly motivates the kill estimation work done in Chapter 9.

• Referring to the previous Section 8.7, for different target aspect, the hitting

ranges including from closest hit till the farthest hit will vary.
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8.9 Summary and Conclusions

In this chapter, the miss distance profiles with respect to different missile/target

engagement parameters were discussed. This will give us a fair idea about how the

miss distance varies as we vary different missile-target engagement parameters. This

shall definitely help us in estimating the capability of a BTT missile.
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Chapter 9

KILL ZONE COMPUTATION & ANALYSIS

9.1 Introduction and Overview

Launching missiles effectively with high success rate is a complex resource alloca-

tion problem. The cost of manufacturing and operating each missile is realtively very

high and so they have to be launched only when their success is guaranteed. If the

hunting area of the missile with its full capability is known, then any target spotted

within the hunting area can be successfully intercepted by launching the missile. The

purpose of this chapter is to illustrate the hunting zone of the BTT missile considered

in this research. Given a thrust profile and fixed initial conditions for both missile and

target, the analysis made in this chapter will explain about the zone of kill where the

missile will successfully intercept the target. Kill Zone is a closed area on the space

which includes all possible target’s starting position, which will result in the missile

intercepting the target. Estimating such a big area in 2D space will need a powerful

estimation algorithm for faster computation and binary search algorithm [71] & [72]

is used here. The research here has been restricted to 2D space by assuming both the

missile and target initially start at the same altitude with respect to each other. The

high fidelity environment used throughout the simulation in this research is employed

to study the Kill Zone profile with respect to different missile/target engagement pa-

rameters using ideas described in the relevant GNC textbooks [51] and [52]. Also the

work done in this chapter takes its motivation from the Section 8.8 in the Chapter 8.

Conventional warheads carried by the missile have a circular blast radius of about
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20 ft [70]. Thus any simulation resulting in a final miss distance less than 20 feet is

taken granted as a hit and kill zone estimation is developed as per this logic. Each

section in this chapter will have information about the flight conditions considered, the

result and its inference. The chapter is organized as follows: Section 9.2 will give an

brief overview about the binary search algorithm and its usage here in our simulation.

Section 9.3 analyses the effect of altitude variation on the estimated kill zone. Section

9.4 throws light on effect of varying the maximum acceleration capability of the missile

over on the estimated kill zone. Section 9.5 discusses the effect of initial missile speed

on the estimated kill zone. Section 9.6 discusses the effect of initial target speed on

the estimated kill zone. Section 9.7 shows how the estimated kill zone varies when the

target’s orientation with respect to the missile measured in terms of Aspect. Section

9.8 will briefly discuss the estimated kill zone change when the proportional gain is

varied. Here the missile is assumed to possess Proportional Navigation guidance law

to intercept the target. Finally Section 9.9 summarizes and concludes the work done

in this chapter and gives a rough idea about estimating the missile’s area of kill using

above analyses.

9.2 Binary Search Algorithm

When we have an infinite 2D space, it is very important to chose a proper algo-

rithm for finding out the kill zone area in a shorter span of time. Naturally binary

search will eliminate half of the unwanted space in each and every iteration and help

us to converge faster towards the solution. As per the current simulation used here,

the time required to obtain a kill zone for one flight condition is approximately 1

minute. For knowing more about the binary search algorithm, the reader is referred

to [22], [71] and [72]. Since we are assuming both the missile and target to start

at the same altitude, the search space reduces to 2D. Now the 2D space is divided
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radially into 360 rays. The challenge here was to find the first hit point and last hit

point along each ray. The following algorithm was used.

Algorithm Steps.

1. Initially the algorithm is started by placing the target to be 100 ft away from

missile along the 180 degree ray.

2. It is assumed that below range of 100 ft, it is pointless to launch a missile

against a target.

3. Now if it is a hit, we double the range and search for a miss or if it is a miss,

we take the average between current hit range and miss range.

4. Thus along a ray, we would find the first hit position.

5. Then the algorithm is restarted with twice the current hit range looking for

final hit range.

6. After averaging and converging to an hit range which differs from miss range

by just 100 ft, we stop the algorithm.

7. This idea is repeated for all the rays. Each ray can be incremented in steps of

2 or 5 degrees to suit the degree of accuracy needed.

8. To speed up the operation, the previous ray final hit range is used in the current

ray final hit range estimation using the motivation from the continuity idea.

9. Finally only the hit positions data are stored. While post processing the data,

we prepare an array of initial hit positions and final hit positions along each ray

and finally plot them using the “boundary” command in MATLAB.

10. The above process is repeated by varying one of the flight condition parameter

and the estimated kill zone is plotted for that parameter variation.

221



www.manaraa.com

9.3 Kill Zone Dependence on Initial Engagement Altitude Variation

Flight Conditions Considered:

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -10000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Azimuth Angle 0 deg Aspect Angle 0 deg

Table 9.1: Flight Conditions for Kill Zone vs Engagement Altitude
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Figure 9.1: Kill Zone vs Engagement Altitude (Lower Altitudes)
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Figure 9.2: Kill Zone vs Engagement Altitude (Higher Altitudes)

Inferences

• From the idea obtained through referring Figure 8.6, it is generally observed

that as the altitude increases, the miss distance increases and hence the kill

zone should become narrower and eventually smaller.

• Results shown in 9.2 correlates well with the results published in [17]. Because

air-density decreases with increasing altitude, it is expected that the missile lose

their aerodynamic effectiveness at higher altitudes because of the inability of

the fins to control the missile in the thin air of upper atmosphere.

• The same idea motivates that missile should perform well in lower altitudes and

that facct is supported by Figure 9.1.

• Above Figures 9.1 & 9.2 exhibit similar pattern as shown in Figure 8.6, where

below 10kft the missile has good chance and as we start increasing altitude from

10kft, the missile chances of hitting target becomes bad.
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• Thus as the engagement altitude increases, the final miss distance increases [17]

and hence the kill zone area decreases.

9.4 Kill Zone Dependence on Missile Maximum Acceleration Variation

Flight Conditions Considered:

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -10000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Azimuth Angle 0 deg Aspect Angle 0 deg

Table 9.2: Flight Conditions for Kill Zone vs Missile Maximum Acceleration
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Figure 9.3: Kill Zone vs Missile Maximum Acceleration

Inferences
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• Ideally giving a higher acceleration advantage of missile over the target will help

missile intercept the target easily.

• The above intuition is well supported by results shown in Figure 9.3.

• The kill zone seems to grow as maximum missile acceleration is increased.

9.5 Kill Zone Dependence on Initial Missile Mach Variation

Flight Conditions Considered:

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -10000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Azimuth Angle 0 deg Aspect Angle 0 deg

Table 9.3: Flight Conditions for Kill Zone vs Missile Mach
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Figure 9.4: Kill Zone vs Initial Missile Mach

Inferences

• It is observed from Figure 9.4 that as the initial mach of the missile increases,

the kill zone grows.

• This is because the missile is able to travel faster and so it can intercept the

target quickly.

• As the speed of missile increases, the missile flight time decreases and hence

with a greater mach, kill zone area increases.

9.6 Kill Zone Dependence on Initial Target Mach Variation

Flight Conditions Considered:
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Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -10000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Azimuth Angle 0 deg Aspect Angle 0 deg

Table 9.4: Flight Conditions for Kill Zone vs Target Mach
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Figure 9.5: Kill Zone vs Target Mach

Inferences

• It is observed from Figure 9.5 that as the initial mach of the target increases,

the kill zone decays.

• This is because the target is able to travel faster and so it can evade the missile

quickly.

• As the initial speed of target increases and even with the missile initial as-
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pect being correct, there are higher chances that the target evading the missile

because of its higher velocity and thus kill zone area decreases.

9.7 Kill Zone Dependence on Initial Aspect Variation

Flight Conditions Considered:

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -10000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Time Constant 0.5 sec

Azimuth Angle 0 deg Aspect Angle 0 deg

Table 9.5: Flight Conditions for Kill Zone vs Target Aspect

Figure 9.6: Target Aspect Orientation With Respect To Missile
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Figure 9.7: Kill Zone For 0 Aspect (Tail-End Chase)
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Figure 9.8: Kill Zone For Small Target Aspect Variation
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Figure 9.9: Kill Zone - Tail-End Chase to Head-on Collision
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Figure 9.10: Kill Zone 45 Degree Symmetry Aspects
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Figure 9.11: Kill Zone 90 Degree Symmetry Aspects
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Figure 9.12: Kill Zone 135 Degree Symmetry Aspects

Inferences

• Target orientation with respect to the missile, referred here as the “Aspect

Angle” is the most influential factor that governs the shape and size of the kill

zone.

• The reader is referred to Figure 9.6 to see how target orientation varies from 0

degree to 180 degrees with respect to the missile.
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• Consider the following scenarios which explains the declaration made just above.

– 0 degree Aspect - Called as the “Tail-End Chase” orientation, has 2 types

namely missile tailgating the target and vice-versa. Refer Figure 9.7.

– 180 degree Aspect - Called as the “Head-On Collision” orientation, has 2

types namely missile coming opposite towards the target and vice-versa

– In above cases, even though the missile is equipped with best possible

Mach and Maximum Acceleration around 80g, it can miss the target by

huge range if the target aspect is not favorable.

• It is possible for the shorter ranges to be missed (with unfavorable aspect) and

longer ranges to be hit successfully (with favorable) and this behaviour can be

easily seen through the Figure 9.9 which shows how the kill zone grows as we

move from tail-end aspect to head-on collision aspect.

• Figure 9.8 shows how aspect angle changes the kill zone in smaller steps.

• Another important phenomenon to observe is the existence of “Symmetry”around

the 0 degree aspect and 180 degree aspect.

• Presence of Symmetry as shown in Figures 9.10, 9.11 & 9.12 shows that missile

will treat the target as same with the target being oriented with respect to it

at 45 degrees or -45 degrees.

• With unfavored aspect, best missile capabilities can go in vain and with correct

(proper) aspect, even tougher ranges could be covered and hence the “aspect”

is an important factor in determining the missile’s success (kill zone).

9.8 Kill Zone Dependence on Proportional Gain Variation

Flight Conditions Considered:
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Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -1000 ft

Initial Missile Mach 0.8999 Target Mode No Maneuver

Initial Target Mach 0.8999 Missile Guidance Prop. Nav.

Azimuth Angle 0 deg Aspect Angle 0 deg

Table 9.6: Flight Conditions for Kill Zone vs Proportional Gain
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Figure 9.13: Kill Zone vs Proportional Gain

Inferences

• It is observed from Figure 9.13 that as the proportional navigation gain of the

missile increases, the kill zone grows.

• This is because higher guidance gain will ensure the error between missile &

target’s position (interpret it as “range”) sgoes to zero quickly as appropriate

commanded variables are generated proportional to the error in position.
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• The result presented above actually agrees well with the ideas explained in

section 8.2 contained in the chapter 8.

• However, there is a caveit here that the proportional gain cannot be increased

arbitrarily as a higher guidance gain will destabilize the guidance loop. This

phenomenon is captured in Figure 8.1 and the same behaviour is expected here

in kill zone estimation too.

9.9 Summary and Conclusions

In this chapter, the estimation of Kill Zone with respect to different missile/target

engagement parameters were discussed. This will give us a fair idea about when to &

when not to launch the missile when its initial conditions are known. Future research

will involve searching in 3D space with same or different algorithms. Also, a complex

target like 6DOF can be used instead of 3DOF to study the variation. This also

opens a new area of research where missile tracking multiple targets based on their

lethality and need of the hour. Thus the work done in this chapter has an excellent

scope for future research.
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Chapter 10

MISSILE-TARGET 3D ANIMATION USING MATLAB

10.1 Introduction and Overview

The purpose of this chapter is to illustrate the design of 3D animation using

VRML toolbox in MATLAB. Earlier work done by [5] had just 2D simulation re-

sults. In order to see how a real missile would intercept its target, the need for 3D

animation arises there. MATLAB offers 3D simulation using VRML toolbox. The

objective was to connect the simulation part in MATLAB with the animation module

as described in [9]. The simulation part was coded in MATLAB with object oriented

programming design methodology and simulation updated the animation at each and

every iteration. Different viewpoints showed how the objects would move in real

time. This animation enables the visualization of missile-target engagement in real

time scenario. A key goal of the chapter is justifying the fact if the missile simulation

is going to work fine in this 3D animation, it is expected to work in real time scenario

just like it behaved in the computer simulation. As such, the chapter illustrates how

to input the inital conditions of missile and target in an interactive Graphical User

Interface(GUI) and view the real time 3D animation with all the simulation running

in the background in MATLAB.

Remainder of this chapter is organized as follows. Section 10.2 will show how

to prepare GUI, simulate the initial flight conditions. Section 10.3 will discuss the

process of updating the animation using the simulation details. Switiching between

different viewpoints is also explained here. Section 10.4 will discuss the results and
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animation obtained by running the MATLAB application. Finally Section 10.5 will

summarize and concludes the work explained in this chapter.

10.2 Interactive GUI Developement

The Graphical User Interface Design Environment (GUIDE) toolkit in the MAT-

LAB can be used to develop several interactive GUIs with MATLAB script code run-

ning in the background. The idea is to build an interactive GUI for the Missile-target

engagement application through which the initial flight conditions can be entered by

the user.

Figure 10.1: Missile-Target Engagement - MATLAB GUI

The GUI developed for this application looks the Figure 10.1, shown above. Initial

Flight conditions for the missile-target engagement includes the following parameters

given in table 10.1:
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Missile Guidance Aspect Integration Method Range

Missile Max. Accel. Step Size Proportional Gain Maneuver Index

Target Mach Elevation Target Maneuver Azimuth

Target Altitude Missile Mach Missile Altitude Target Tau

Table 10.1: GUI Flight Conditions Selection for Missile-Target Engagement

• Once the above parameters are selected, the Load Initial Conditions button is

hit.

• Internally MATLAB will create Missile & Target Class objects and loads the

user entered initial flight conditions.

• Then the Run Animation button is hit which will start the Missile-Target En-

gagement simulation and each and every step of the simulation is updated using

an 3D animation which was developed using VRML toolbox in MATLAB.

• Once the animation, i.e., the simuation gets over, final statistics are displayed

and the post flight data can be analyzed by clicking Plot Data button.

• Thus in one single GUI screen, the user will be able to enter their desired initial

flight conditions, see the animation to get a virtual feel of how the missile would

intercept the target in real time and conclude by seeing all the final statistics

and the post flight data in the same screen.

10.3 3D Animation using MATLAB VRML Toolbox

VRML (Virtual Reality Modeling Language) toolbox in MATLAB can be used

to make different interactive animations. Here in this research, missile-target en-

gagement can be visualized using the features offered by the MATLAB. Since the
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entire MATLAB application has been coded in an object oriented architecture, the

same program can be easily extended to multiple missile-target engagement just by

using new object for Missile and Target class. Thus the entire simulation data has

to be communicated to animating world in a way that it understands. Once that is

achieved, then whatever happens in simulation can be seen in real time 3D animation

as animation is just updating the simulation flow. The motivation for going for a 3D

animation is to visualize how the missile-target engagement would happen in a real

world scenario (which would be difficult for us to see in real time). And given a better

modeling and design environment, it can be believed that real missile would exactly

behave and intercept the target like it does in 3D animation. Several aerospace com-

panies spend billions of dollar in modeling the environment so that things if they

work in simulation well are expected to work almost the same way in real world.

Thus to prepare an interative 3D animation we require the following,

1. Nice and fancy 3D Background

2. Missile Object

3. Aircraft Object

4. Different Viewpoints

5. Proper interface between VRML editor and MATLAB - Could be either

through MATLAB or SIMULINK. MATLAB interface is used in this

research.
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Figure 10.2: Missile-Target Engagement - 3D Animation

Figure 10.3: Missile-Target Engagement - 3D Animation Top View

3D World Editor - VRML Editor which comes as a part of MATLAB VRML tool-

box was used to develop the 3D animation environment. There are other commercial

VRML editors available in the market for cheaper costs like V-Realm Builder, 3DStu-

dio, Blender etc... 3D World Editor was good enough to prepare the animation in this

research. VRML files have “.wrl” format which is a short form for “world”. Initially
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the 3D background was developed, then the missile and target objects were properly

placed in the 3D background in such a way as to mimick the initial conditions given

through the interactive MATLAB GUI. The VRML toolbox in MATLAB already

has different aerospace objects like aircraft, missile, helicopters, rockets etc. One

such missile and target aircraft from that repository is being used in this research.

Then the different viewpoints can be made according to the user requirements. A

missile cockpit viewpoint along with other 4 viewpoints were developed for this re-

search. For example, refer figure 10.3 for a top viewpoint. Cockpit viewpoint as

shown in Figure 10.2 will give a real-time feel as if we were sitting inside the missile

and riding it(Although never done in real life!). Different flight parameters of both

missile and target can be tracked as the animation progresses. This gives a real-time

feel like traveling in a fighter aircraft being a pilot. Given the power of GPUs nowa-

days, this missile-target engagement simulation can be made much faster, while the

current research is done without the usage of GPUs. Also, if the MATLAB is made

aware of intelligently using the GPUs, then this research can get really interesting.

There are other better softwares like Blender, Maya, 3DS Max which is capable of

creating content rich 3D object files in different format. As of now, good resource

files in “.wrl” format are really less available. MATLAB recently extended the 3D

animation capability to “.x3d” format too. Similarly there are ways to import 3D

object files from the 3D authoring worlds like AutoCAD, CATIA, Solidworks and so

into the MATLAB and create animations with them.

10.4 Simulation Results & Analysis

Post flight analysis from simulating the conditions from table 10.2 are plotted

and comparison of MATLAB results with C program [5] is presented. The plots

ranging from Figure 10.4 - 10.14 show that both C and MATLAB simulations are
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really close to each other, depicting that MATLAB program is as accurate as C

program, eventhough it is written with different programming style and interpolating

techniques for calculating aerodynamic coefficients.

Flight Conditions Considered:

Flight Parameter Value Flight Parameter Value

Missile Max. Accel. 80 g Initial Height -1000 ft

Initial Missile Mach 0.8999 Target Range 2000 ft

Initial Target Mach 0.8999 Missile Guidance Optimal Control

Target Maneuver Sheldon Aspect Angle 0 deg

Table 10.2: Flight Conditions for MATLAB & C Simulations

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

30
Alpha vs Flight Time 

Flight Time in sec

A
ng

le
 O

f A
tta

ck
 in

 d
eg

 

 

Matlab
C

Figure 10.4: Alpha Profile - MATLAB & C Simulations
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Figure 10.5: Profile - MATLAB & C Simulations
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Figure 10.6: Profile - MATLAB & C Simulations
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Figure 10.7: Fin 1 Profile - MATLAB & C Simulations

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−12

−10

−8

−6

−4

−2

0

2

4
Fin 2 Deflection vs Flight Time 

Flight Time in sec

F
in

 2
 D

ef
le

ct
io

n 
in

 d
eg

 

 

Matlab
C

Figure 10.8: Fin 2 Profile - MATLAB & C Simulations
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Figure 10.9: Fin 3 Profile - MATLAB & C Simulations
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Figure 10.10: Fin 4 Profile - MATLAB & C Simulations
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Figure 10.11: Fin 1 Rate Profile - MATLAB & C Simulations
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Figure 10.12: Fin 2 Rate Profile - MATLAB & C Simulations
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Figure 10.13: Fin 3 Rate Profile - MATLAB & C Simulations
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Figure 10.14: Fin 4 Rate Profile - MATLAB & C Simulations
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10.5 Summary and Conclusions

In this chapter, developement of 3D animation using MATLAB VRML toolbox is

explained in detail. Also development of interactive GUI for entering the initial flight

conditions is explained. Visualization of missile-target engagement using MATLAB

will enable us to explore future research, behaviour of both missile and target can be

studied thoroughly. Finally the MATLAB simulation results are compared with C

program [5] results and accuracy of MATLAB simulation is ascertained.
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Chapter 11

SUMMARY & DIRECTIONS FOR FUTURE RESEARCH

11.1 Summary of Work

This thesis addressed about the analysis, and control issues that are critical about

the BTT missiles. The following summarizes key themes within the thesis.

1. Literature Survey. A fairly comprehensive literature survey of relevant work

was presented.

2. Modeling. A nonlinear dynamical model for the BTT missile was presented

and linearization analysis was performed to understand the full utility of each

model.

3. Control. Both inner-loop and outer-loop control designs were discussed in

the context of an overall hierarchical control inner-outer loop framework. This

framework lends itself to accommodate multiple phase of missile flight; The

need for an nonlinear gain scheduled autopilot was explored and a sample non-

linear autopilot was obtained using incremental nonlinear dynamic inversion

technique for the innermost rate control loop design. Comprehensive inner-loop

trade studies were conducted for the BTT missile. A great deal of effort was

spent on discussion fundamental performance limitations. Attention was spent

on numerical integration step size limitations as well as dynamic (bandwidth)

limitations.
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4. Miss Distance Analysis. Set of missile-target engagement simulations were

carried out by varying various missile flight conditions and their effects on final

miss distance was analyzed and tabulated.

5. Kill Zone Analysis. Using Binary Search algorithm, a closed area in 2D

space where the probability of missile hitting the target being high was esti-

mated. The estimated result is analyzed for various flight parameter variations

and tabulated.

6. Animation Demonstrations. Many animation demonstrations were con-

ducted - with animation corroborating the simulation data results.

11.2 Directions for Future Research

Complicated research topic like missile control always presents great deal of fu-

ture topics to explore. Remember uncertainity modeling in plant dynamics is not

addressed here. Things get interesting when we try to include uncertainity model in

our control design and we would like to see how they affect our robustness properties

at different loop breaking points. Thus looking forward from the research conducted

here, following points will throw some light on future topics to explore.

1. Integrated Guidance Navigation & Control (GNC) design where guidance loop

is designed as a part of autopilot and the new design can be studied for its

robustness.

2. Studying missile-target engagement with a 6DOF target and learn when would

we need such a complicated target over a simple 3DOF target which is used in

this research. Remember when target is 6DOF, it will have its own autopilot.
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3. Trying out different target intelligence algorithms and learn how an increase in

target intelligence would affect the missile’s tracking ability.

4. Extending current 2D kill zone search to 3D search space, where both missile

and target can start at any altitude. Also analyzing the same 3D kill zone

with respect to different missile-target engagement parameters and comparitive

studies can be done with 2D kill zone results presented in this thesis.

5. Optimal Control missile guidance law suffers from poor Time-To-Go estimate

problem. This can be addressed using an Extended Kalman Filter (EKF) algo-

rithm.

6. Extending one-on-one missile target engagement to multiple missile-target en-

gagement. Multiple missiles can be made to chose their target dynamically on

the run-time based on some state of emergency (need of the hour) or lethal

nature of target. This is a very interesting resource allocation problem and

interessting solutions can be achieved using game theory techniques developed

for pursuit evasion problems.
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[7] Çimen T., “A Generic Approach to Missile Autopilot Design using State-
Dependent Nonlinear Control,” Preprints of the 18th IFAC World Congress, Mi-
lano, Italy, August 28 - September 2, 2011, pp. 9587 - 9600.

[8] Siddarth A. N., Peter F., Holzapfel F., Valasek J., “Autopilot for a Nonlinear
Non-Minimum Phase Tail-Controlled Missile,” AIAA Guidance, Navigation, and
Control Conference, 13-17 January 2014, National Harbor, Maryland.

[9] Wang G., Mei W., Liu H., Xiao Y., “The Design of Virtual Reality Flight Simula-
tion Platform Based on Rigid Body Kinematics,” International Journal of Digital
Content Technology and its Applications(JDCTA), Vol. 7, No. 7, April 2013.

[10] Cloutier J. R., Stansbery D. T., “Nonlinear, Hybrid Bank-to-Turn/Skid-to-Turn
Missile Autopilot Design,” Proceedings of AIAA Guidance, Navigation & Control
Conference, Montreal, Canada, August 2001.

[11] Cloutier J. R., “State-Dependent Riccati Equation Techniques: An Overview,”
Proceeding of American Control Conference, Albuquerque, New Mexico, June
1997.

[12] Hawley P. A., Blauwkamp R. A., “Six-Degree-of-Freedom Digital Simulations for
Missile Guidance, Navigation and Control,” John Hopkins APL Technical Digest,
Vol. 29, No. 1, 2010.

[13] Jackson P. B., “Overview of Missile Flight Control Systems,” John Hopkins APL
Technical Digest, Vol. 29, No. 1, 2010.

251



www.manaraa.com

[14] Kaplan J. A., Chappell A. R., Mcmanus J. W., “The Analysis of a Generic Air-
to-Air Missile Simulation Model,” NASA Technical Memorandum 109057, June
1994.

[15] Rodriguez A. A., Sonne M., “The PC as a Viable Tool in the Design and Evalu-
ation Process of Guidance and Control Systems for Missiles,” Proceedings of the
1994 International Conference on Simulation in Engineering Education, Tempe,
AZ, January 24-26 1994, pp. 329-334.

[16] Rodriguez A. A., Aguilar R., “Graphical Visualization of Missile-Target Air-
to-Air Engagements: An Educational Tool for Designing and Evaluating Missile
Guidance and Control Systems,” Journal of Computer Applications in Engineer-
ing Education, Vol. 3, No. 1, 1995, pp. 5-20.

[17] Rodriguez A. A., Sonne M. L., “Evaluation of Missile Guidance and Control
Systems Simulation,” The Journal of the Society for Computer Simulation, Vol.
68, No. 6, June, 1997, pp. 363-376.

[18] Cloutier J. R., Evers J. H., Feeley J. J., “Assesment of Air-to-Air Missile Guid-
ance and Control Technology,” IEEE Control Systems Magazine, October 1989,
pp. 27-34.

[19] Silbert M., Sarkani S., Mazzuchi T., “Comparing the State Estimates of a
Kalman filter to a Perfect IMM Against a Maneuvering Target,” 14th Interna-
tional Conference on Information Fusion, Chicago, Illinois, July 5-8, 2011, pp.
1144-1148.

[20] Cronvich L. L., “Aerodynamic Considerations for Autopilot Design,” Progress
in Astronautics and Aeronautics Tactical Missile Aerodynamics, Vol. 141, 1992,
p. 37.

[21] Williams D. E., Friedland B., “Modern Control Theory for Design of Autopilots
for Bank-to-Turn Missiles,” Journal Guidance Control, Vol. 10, No. 4, July-August
1987, pp. 378-386.

[22] Das P., Khilar P. M., “A Randomized Searching Algorithm and its Performance
analysis with Binary Search and Linear Search Algorithms,” The International
Journal of Computer Science and Applications (TIJCSA), Volume 1, No. 11, Jan
2013, ISSN - 2278-1080.

[23] Hui Y., Nan Y., Chen S., Ding Q., Wu S., “Dynamic Attack Zone of Air-to-Air
missile after being launched in random wind field,” Chinese Journal of Aeronau-
tics, 2015, pp. 1519 - 1528.

[24] Shinar J., Gazit R., “Optimal ‘No Escape’ Firing Envelopes of Guided Mis-
siles,” AIAA Guidance Navigation & Control Conference, AIAA-paper No. 85-
1960, Snowmass, Colorado, August 1985.

[25] Smith R. L., “An Autopilot Design Methodology for Bank-to-Turn Missiles,”
Interim Report AFATL-TR-89-49 March 1988 - April 1989 Eglin AFB, FL.

252



www.manaraa.com

[26] Kramer F. S., “Multivariable Autopilot Design and Implementation for Tactical
Missiles,” American Institute of Aeronautics and Astronautics, 1998.

[27] Venkatesan R. H., Sinha N. K., “A New Guidance Law for the Defense Missile of
Nonmaneuverable Aircraft,” IEEE Transactions on Control Systems Technology,
Vol. 23, No. 6, November 2015.

[28] Cloutier J. R., Shamma J. S., “Gain-Scheduled Missile Autopilot Design Using
Linear Parameter Varying Transformations,” Journal of Guidance Control and
Dynamics, Vol. 16, No. 2, March-April 1993.

[29] Bossi J. A., Langehough M. A., “Multivariable Autopilot Designs for a Bank-to-
Turn Missile,” Boeing Aerospace, Seattle.

[30] Birkmire B., “Weapon Engagement Zone Maximum Launch Range Approxima-
tion Using a Multilayer Perceptron,” MS Thesis at B.S. Wright State University,
2008.

[31] Chen D. Z., “Efficient Parallel Binary Search on Sorted Arrays,” (1990) Com-
puter Science Technical Reports, Paper 11.

[32] Corzo C., DeHerrera M. F., Rodriguez A. A., “Missile Target Engagements: A
Tool for Evaluating Missile Autopilots,” Presented at the 1996 MAES National
Symposium and Career Fair, Lake Buena Vista, FL, January 10-13, 1996.

[33] Aguilar R., Rodriguez A. A., “Graphical Visualization of Missile-Target Air-to-
Air Engagements: A Tool for Designing and Evaluating Missile Guidance and
Control Systems,” Presented at the 3rd NSF National Conference on Diversity in
the Scientific and Technological Workforce, October 1994.

[34] Rodriguez A. A., Wang Y., “Saturation Prevention Strategies for an Unstable
Bank-to-Turn (BTT) Missile: Full Information,” 13th IFAC Symposium: Au-
tomatic Control in Aerospace Engineeering - Aerospace Control 1994, Editors:
Schaechter D. B., Lorell K. R., Palo Alto, CA, September 12-16, 1994, pp. 149-
154.

[35] Wu F., Packard A., Balas G., “LPV Control Design for Pitch- Axis Missile
Autopilots,” Proceedings of the 34th Conference on Decision and Control, New
Orleans, LA, December, 1995.

[36] Balas G. J., Packard A., “Design of Robust, Time-Varying Controllers for Missile
Autopilots,” Proc. 1st IEEE Conf. Control Applications, 1992.

[37] Abell D. C., Caraway W. D., “A Method for Determination of Target Aspect
Angle with Respect to an Unleveled Radar,” Army aviation and missile com-
mand redstone arsenal al missile research development and engineering center,
July 1998.

[38] Rodriguez A. A., Cloutier J. R., “Performance Enhancement for a Missile in
the Presence of Saturating Actuators,” AIAA Journal of Guidance, Control and
Dynamics, January-February, 1996, Vol 19, pp. 38-46.

253



www.manaraa.com

[39] Rodriguez A. A., Wang Y., “Performance Enhancement for Unstable Bank-to-
Turn (BTT) Missiles with Saturating Actuators,” International Journal of Con-
trol, Vol. 63, No. 4, 1996, pp. 641-678.

[40] Barker J. M., Balas G. J., “Comparing Linear Parameter-Varying Gain-
Scheduled Control Techniques for Active Flutter Suppression,” Journal of Guid-
ance, Control and Dynamics, 23(5):948-955, September-October 2000.

[41] Rodriguez A. A., Wang Y., “Saturation Prevention Strategies for Unstable Bank-
to-Turn (BTT) Missiles: Partial Information,” Proceedings of the American Con-
trol Conference, Seattle, WA, June 21-23, 1995, pp. 2143-2147.

[42] Rodriguez A. A., Spillman M., Ridgely D. B., “Control of a Missile in the Pres-
ence of Saturating Actuators,” Presented and Distributed at the American Control
Conference, Seattle, WA, June 21-23, 1995.

[43] Puttannaiah K, Echols J, and Rodriguez A, “A Generalized H∞ Control De-
sign Framework for Stable Multivariable Plants subject to Simultaneous Output
and Input Loop Breaking Specifications,” American Control Conf. (ACC), IEEE,
2015.

[44] Puttannaiah K, Echols J, Mondal K and Rodriguez A, “Analysis and Use of Sev-
eral Generalized H-Infinity Mixed Sensitivity Framework for Stable Multivariable
Plants Subject to Simultaneous Output and Input Loop Breaking Specifications,”
Accepted for publication in Conf. on Decision and Control (CDC), IEEE, 2015.

[45] Rodriguez A. A., “A Methodology for Missile Autopilot Performance Enhance-
ment in the Presence of Multiple Hard Nonlinearities,” AFOSR SFRP Report,
WL/MNAG, Eglin Air Force Base, FL, Sept, 1993.

[46] Rodriguez A. A., “Development of Control Design Methodologies for Flexible
(High Order) Missile Systems with Multiple Hard Nonlinearities,” AFOSR SFRP
Report, WL/MNAG, Eglin Air Force Base, FL, September, 1992, pp. 47-1-47-20.

[47] Johnson and Reiss, “Numerical Analysis,” Chapters 7.2.4 - 7.2.5.

[48] Arrow A., “An Analysis of Aerodynamic Requirements of Coordinated Bank-to-
Turn Missiles,” NASA CR 3544, 1982.

[49] Chin S., “Missile Configuration Design,” McGraw Hill, 1961, p17.

[50] Cloutier J. et.al, “Assessment of Air-to-Air Missile Guidance and Control Tech-
nology,” IEEE C. Sys., Oct 1989, pp. 27-34.

[51] Siouris G. M., “Missile Guidance and Control Systems,” 2004 Springer-Verlag
New York, Inc.

[52] Zarchan P., “Tactical and Strategic Missile Guidance,” AIAA Inc., 1990.

[53] Babister A. W., “Aircraft Stability and Control,” Oxford: Pergamon Press, 1961.

254



www.manaraa.com

[54] Shastry S., Bodson M., “Adaptive Control: Stability, Convergence, and Robust-
ness,” Prentice Hall, 1989.

[55] Etkin B., “Dynamics of Flight Stability and Control,” John Wiley and Sons,
Inc., 1982, pp. 3.

[56] Reidel F. W., “Bank-To-Turn Control Technology Survey for Homing Missiles,”
NASA CR 3325, 1980.

[57] McCormick B., “Aerodynamics, Aeronautics and Flight Mechanics,” John Wiley
and Sons, Inc., 1979.

[58] Robert N., “Flight Stability and Automatic Control,” McGraw Hill, 1989, p. 6.

[59] McRuer, Duane et al., “Aircraft Dynamics and Automatic Control,” Princeton
University Press, Princeton, New Jersey, 1973, p. 208.

[60] Lin, Ching-Fang, “Modern Navigation Guidance and Control Processing,” Pren-
tice Hall, 1991, pp. 14, 184.

[61] Rodriguez A. A., “Missile Guidance,” Wiley Encyclopedia of Electrical and Elec-
tronics Engineering, 15 June 2015.

[62] Blakelock J. H., “Automatic Control of Aircraft and Missiles,” John Wiley and
Sons, Inc., Second Edition.

[63] Lofberg J., “Yalmip: A toolbox for modeling and optimization in matlab in
Computer Aided Control Systems Design,” 2004 IEEE International Symposium,
pp. 284-289.

[64] Rodriguez A. A., Analysis and Design of Feedback Control Systems, Con-
trol3D,L.L.C., Tempe, AZ, 2002.

[65] Rodriguez A. A., Analysis and Design of Multivariable Feedback Control Systems,
Control3D, L.L.C., Tempe, AZ, 2002.

[66] Rodriguez A. A., Linear Systems: Analysis and Design, Control3D,L.L.C.,
Tempe, AZ, 2002.

[67] Rodriguez A. A., EEE481: Computer Control Systems, course notes, 2014.

[68] Olver P., “Notes on Nonlinear Ordinary Differential Equations,”
https://www.math.umn.edu/∼olver/am /odz.pdf

[69] Hespanha J. P., “Topics in Undergraduate Control Systems Design”.

[70] “Conventional Missiles Warheads and their Blast Radii,”
http://kitsune.addr.com/Rifts/Rifts-Missiles/convent.htm

[71] “Wikipedia Link for Studying Binary Search Algorithm,”
https://en.wikipedia.org/wiki/Binary search algorithm

255



www.manaraa.com

[72] “C Program Code for Binary Search Algorithm,”
http://www.programmingsimplified.com/c/source-code/c-program-binary-search

[73] “Simulink 3D Animation - User’s Guide,”
http://www.mathworks.com/help/sl3d/index.html?s cid=doc ftr

[74] “Control of Linear Parameter Varying Systems - Wikipedia,”
https://en.wikipedia.org/wiki/Linear parameter-varying control

[75] Gerard Leng, “MDTS Guidance, Aerodynamics & Control Course Website,”
http://dynlab.mpe.nus.edu.sg/mpelsb/mdts/index.html

[76] Warnick S. C., Rodriguez A. A., “A Systematic Anti-windup Strategy and the
Longitudinal Control of a Platoon of Vehicles with Control Saturations,” IEEE
Transactions on Vehicular Technology, Vol. 49, No. 3, May 2000, pp. 1006-101

[77] Hedrick J. K., Girard A., Control of Nonlinear Dynamic Systems: Theory and
Applications, 2005.

[78] Stein G., “Respect the Unstable,” IEEE Control Systems Magazine, 2003.

[79] Skogestad S., Postlethwaite I., Multivariable Feedback Control: Analysis and
Design, Wiley, 1996.

[80] Morari M., Zafiriou E., Robust Process Control, Prentice Hall.

256



www.manaraa.com

257



www.manaraa.com

APPENDIX A

C CODE - BINARY SEARCH ALGORITHM
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1 //
2 // VENKATRAMAN RENGANATHAN
3 // ASU ID : 1206395992
4 // MS EE Fa l l 2013 − Summer 2016
5 // Ph . No − 4806289124
6 // Thes is on M i s s i l e Guidance Control System
7 //
8 //BELOW C CODE CAN BE MODIFIED FOR MISS DISTANCE ANALYSIS TOO.
9 //BINARY SEARCH KILL ZONE

10
11 void main ( )
12 {
13 in t i = 0 , up r ay f i n i s h , h i t r each , miss reach , h i t c oun t e r = 0 ;
14 i n t p r ev i ou s r ay h i t c oun t = 0 , ha l f s e a r ch comp l e t e = 0 ;
15 i n t r e s t a r t o n = 0 , m i s s th r e sho ld = 0 , NAN check = 0 ;
16 f l o a t i n i t i a l r a n g e = 0 , miss range = 0 , f i n a l 1 8 0 h i t r a n g e = 0 ;
17 f l o a t p r e v i o u s f i n a l h i t r a n g e = 0 , h i t r ange = 0 , h i t a r r a y [ 1 0 0 ] ;
18 f l o a t t a r g e t h i t y p o s i t i o n s [ 1 0 0 ] , t a r g e t h i t x p o s i t i o n s [ 1 0 0 ] ;
19
20 a l t i t u d e a r r a y [ 0 ] = −1000;
21 a l t i t u d e a r r a y [ 1 ] = −2000;
22 a l t i t u d e a r r a y [ 2 ] = −5000;
23 a l t i t u d e a r r a y [ 3 ] = −8000;
24 a l t i t u d e a r r a y [ 4 ] = −10000;
25
26 max acce l ar ray [ 0 ] = 15 ;
27 max acce l ar ray [ 1 ] = 30 ;
28 max acce l ar ray [ 2 ] = 45 ;
29 max acce l ar ray [ 3 ] = 60 ;
30 max acce l ar ray [ 4 ] = 80 ;
31
32 /∗mach array [ 0 ] = 0 . 8999 ;
33 mach array [ 1 ] = 1 . 0 ;
34 mach array [ 2 ] = 1 . 1 ;
35 mach array [ 3 ] = 1 . 2 ;
36 mach array [ 4 ] = 1 . 3 ; ∗/
37
38 mach array [ 0 ] = 1 . 4 ;
39 mach array [ 1 ] = 1 . 5 ;
40 mach array [ 2 ] = 1 . 6 ;
41 mach array [ 3 ] = 1 . 7 ;
42 mach array [ 4 ] = 1 . 8 ;
43
44 f l i g h t c o nd i t i o n c o un t = 5 ;
45 f o r ( i = 0 ; i <100; i++)
46 {
47 // Completely c l e a r the ar rays and make them ready f o r new ray
48 h i t a r r a y [ i ] = 0 ;
49 t a r g e t h i t x p o s i t i o n s [ i ] = 0 ;
50 t a r g e t h i t y p o s i t i o n s [ i ] = 0 ;
51 }
52
53 f o r ( mach id = 0 ; mach id <5; mach id++)
54 {
55 a l t i i d = 0 ; //
56 max acc id = 4 ; // Max ac c e l = 80g
57 f l i g h t c o nd i t i o n c o un t = f l i g h t c o nd i t i o n c o un t + 1 ;
58 In t i a l Cond i t i on s Count e r = 0 ; // Reset f o r every f l i g h t cond i t i on
59 ray ang l e = 180 ;
60 ha l f s e a r ch comp l e t e = 0 ; // r e s e t the f l a g f o r next i t e r a t i o n .
61 // K i l l ZONE fo r 1 F l i gh t Condit ion
62 whi le ( ray ang l e < 360 && ray ang l e > 0)
63 {
64 i f ( h i t c oun t e r != 0)
65 {
66 OpenOut ( ) ;
67 SaveData ( h i t a r ray , t a r g e t h i t x p o s i t i o n s , t a r g e t h i t y p o s i t i o n s ) ;
68 f o r ( i = 0 ; i <100; i++)
69 {
70 // Completely c l e a r the ar rays and make them ready f o r new ray
71 h i t a r r a y [ i ] = 0 ;
72 t a r g e t h i t x p o s i t i o n s [ i ] = 0 ;
73 t a r g e t h i t y p o s i t i o n s [ i ] = 0 ;
74 }
75 F i l e c l o s e ( ) ;
76 }
77 // ray search to the f a r end
78 // s t o r e l a s t ray h i t counts f o r stopping the search .
79 p r ev i ou s r ay h i t c oun t = h i t c oun t e r ;
80 i n i t i a l r a n g e = 100 ;
81 Range = i n i t i a l r a n g e ;
82 h i t r ange = 0 ;
83 miss range = 0 ;
84 up r a y f i n i s h = 0 ;
85 mi s s th r e sho ld = 0 ;
86 mis s reach = 0 ;
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87 h i t c oun t e r = 0 ;
88 h i t r e a ch = 0 ;
89 r e s t a r t o n = 0 ;
90
91 // search along 1 ray
92 whi le ( u p r a y f i n i s h == 0)
93 {
94 s l ope = tan ((180− ray ang l e )∗Deg2Rad ) ;
95 f o r ( i =0; i <36; i++)
96 {
97 X[ i ] = 0 ;
98 Xdot [ i ] = 0 ;
99 }

100 Launch ( ) ;
101 F l i gh t (X, Xdot ) ; // f l y m i s s i l e , with i n i t i a l i z e d s t a t e s
102 NAN check = ( ( Range != Range ) | | (Smx != Smx ) ) ;
103 i f ( r e s t a r t o n == 0) // normal search i s happening
104 {
105 i f ( ( Range <= 20 && Range >= 0) && miss reach != 1)
106 {
107 // h i t cond i t i on be f o r e 1 s t miss along ray
108 h i t r e a ch = 1 ;
109 mi s s th r e sho ld = 0 ;
110 h i t r ange = i n i t i a l r a n g e ;
111 h i t a r r a y [ h i t c oun t e r ] = h i t r ange ;
112 t a r g e t h i t x p o s i t i o n s [ h i t c oun t e r ] = t a r g e t i n i t i a l x ;
113 t a r g e t h i t y p o s i t i o n s [ h i t c oun t e r ] = t a r g e t i n i t i a l y ;
114 h i t c oun t e r = h i t c oun t e r + 1 ;
115 i n i t i a l r a n g e = 2 ∗ h i t r ange ;
116 Range = i n i t i a l r a n g e ;
117 }
118 e l s e i f ( ( Range <= 20 && Range >= 0) && miss reach == 1)
119 {
120 // h i t cond i t i on a f t e r 1 s t miss along ray
121 h i t r e a ch = 1 ;
122 mi s s th r e sho ld = 0 ;
123 h i t r ange = i n i t i a l r a n g e ;
124 h i t a r r a y [ h i t c oun t e r ] = h i t r ange ;
125 t a r g e t h i t x p o s i t i o n s [ h i t c oun t e r ] = t a r g e t i n i t i a l x ;
126 t a r g e t h i t y p o s i t i o n s [ h i t c oun t e r ] = t a r g e t i n i t i a l y ;
127 h i t c oun t e r = h i t c oun t e r + 1 ;
128 i n i t i a l r a n g e = ( h i t r ange + miss range ) /2 ;
129 Range = i n i t i a l r a n g e ;
130 }
131 e l s e i f ( ( ( fabs (Range ) > 20) | | (NAN check == 1)) && ( h i t r e a ch != 1))
132 {
133 // miss cond i t i on be f o r e 1 s t h i t
134 mis s reach = 1 ;
135 mi s s th r e sho ld = mi s s th r e sho ld + 1 ;
136 miss range = i n i t i a l r a n g e ;
137 i n i t i a l r a n g e = 2∗ miss range ;
138 Range = i n i t i a l r a n g e ;
139 }
140 e l s e i f ( ( ( fabs (Range ) > 20) | | (NAN check == 1)) && ( h i t r e a ch == 1))
141 {
142 // miss cond i t i on a f t e r 1 s t h i t
143 mis s reach = 1 ;
144 mi s s th r e sho ld = mi s s th r e sho ld + 1 ;
145 miss range = i n i t i a l r a n g e ;
146 i n i t i a l r a n g e = ( h i t r ange + miss range ) / 2 ;
147 Range = i n i t i a l r a n g e ;
148 }
149 }
150 e l s e // r e s t a r t i s happening
151 {
152 i f ( ( Range <= 20 && Range >= 0) && miss reach != 1)
153 {
154 // h i t cond i t i on whi le querying range us ing
155 // p r e v i o u s r a y f i n a l h i t r a n g e
156 h i t r e a ch = 1 ;
157 mi s s th r e sho ld = 0 ;
158 h i t r ange = i n i t i a l r a n g e ;
159 h i t a r r a y [ h i t c oun t e r ] = h i t r ange ;
160 t a r g e t h i t x p o s i t i o n s [ h i t c oun t e r ] = t a r g e t i n i t i a l x ;
161 t a r g e t h i t y p o s i t i o n s [ h i t c oun t e r ] = t a r g e t i n i t i a l y ;
162 h i t c oun t e r = h i t c oun t e r + 1 ;
163 i n i t i a l r a n g e = 2 ∗ h i t r ange ;
164 Range = i n i t i a l r a n g e ;
165 }
166 e l s e i f ( ( Range <= 20 && Range >= 0) && miss reach == 1)
167 {
168 // h i t cond i t i on a f t e r 1 s t miss along ray
169 h i t r e a ch = 1 ;
170 mi s s th r e sho ld = 0 ;
171 h i t r ange = i n i t i a l r a n g e ;
172 h i t a r r a y [ h i t c oun t e r ] = h i t r ange ;
173 t a r g e t h i t x p o s i t i o n s [ h i t c oun t e r ] = t a r g e t i n i t i a l x ;
174 t a r g e t h i t y p o s i t i o n s [ h i t c oun t e r ] = t a r g e t i n i t i a l y ;
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175 h i t c oun t e r = h i t c oun t e r + 1 ;
176 i n i t i a l r a n g e = ( h i t r ange + miss range ) /2 ;
177 Range = i n i t i a l r a n g e ;
178 }
179 e l s e i f ( ( fabs (Range ) > 20) | | (NAN check == 1))
180 {
181 // miss cond i t i on whi le querying range us ing
182 // p r e v i o u s r a y f i n a l h i t r a n g e
183 mis s reach = 1 ;
184 mi s s th r e sho ld = mi s s th r e sho ld + 1 ;
185 miss range = i n i t i a l r a n g e ;
186 i n i t i a l r a n g e = ( h i t r ange + miss range ) / 2 ;
187 Range = i n i t i a l r a n g e ;
188 }
189 } // r e s t a r t module completed
190 i f ( ( m i s s th r e sho ld >= 10) && ( h i t r e a ch == 0))
191 {
192 // FINAL TERMINATION CRITERION
193 up r a y f i n i s h = 1 ; // ray search over
194 }
195 i f ( ( fabs ( h i t r ange − miss range ) < 100) && ( up r a y f i n i s h == 0))
196 {// | hit−miss |<100 | | range>20
197 i f ( miss range > h i t r ange )
198 {
199 // FINAL TERMINATION CRITERION
200 up r a y f i n i s h = 1 ; // ray search over
201 }
202 e l s e
203 {
204 // I n i t i a l Hit Range found .
205 // Restart the a lgor i thm to f i nd the f i n a l h i t r ange
206 // FORCE RESTART
207 i f ( r ay ang l e == 180)
208 {
209 i n i t i a l r a n g e = 2 ∗ h i t a r r a y [ 0 ] ;
210 }
211 e l s e
212 {
213 // search cur rent ray ' s f i n a l h i t p o s i t i o n with
214 // idea from prev ious ray ' s f i n a l h i t p o s i t i o n
215 i n i t i a l r a n g e = p r e v i o u s f i n a l h i t r a n g e ;
216 }
217 h i t r ange = h i t a r r a y [ 0 ] ;
218 h i t r e a ch = 0 ; // r e s e t h i t r e a ch f l a g
219 mis s reach = 0 ; // r e s e t mis s reach f l a g
220 up r a y f i n i s h = 0 ; // ray search not over
221 Range = i n i t i a l r a n g e ;
222 r e s t a r t o n = 1 ;
223 }
224 }
225 // CHECK FOR TERMINATION CRITERION FOR BOTTOM AND TOP SEARCH
226 i f ( u p r a y f i n i s h == 1)
227 {
228 i f ( h i t c oun t e r == 0 && pr ev i ou s r ay h i t c oun t != 0
229 && ha l f s e a r ch comp l e t e == 0)
230 {
231 // FINAL TERMINATION CRITERION fo r BOTTOM SEARCH
232 // h i t c oun t e r == 0 −−−> cur rent ray i s a complete miss ing ray
233 // p r ev i ou s r ay h i t c oun t != 0 −−−> prev ious ray had a t l e a s t 1 h i t
234 // ha l f s e a r ch comp l e t e == 0 −−> bottom search i s happenning
235 // Previous ray had a t l e a s t 1 h i t and current ray has no h i t s .
236 // Stop sea rch ing along ray which cont inuous ly g i v e s a miss
237 // f o r c e i t to s t a r t s ea r ch ing from 178 deg in the top d i r e c t i o n
238 // s e t the bottom search complete f l a g to 1
239 up r a y f i n i s h = 1 ;
240 ray ang l e = 180 ;
241 p r e v i o u s f i n a l h i t r a n g e = f i n a l 1 8 0 h i t r a n g e ;
242 ha l f s e a r ch comp l e t e = 1 ;
243 }
244 e l s e i f ( h i t c oun t e r == 0 && pr ev i ou s r ay h i t c oun t != 0
245 && ha l f s e a r ch comp l e t e == 1)
246 {
247 // FINAL TERMINATION CRITERION fo r TOP SEARCH
248 // h i t c oun t e r == 0 −−−> cur rent ray i s a complete miss ing ray
249 // p r ev i ou s r ay h i t c oun t != 0 −−−> prev ious ray had a t l e a s t 1 h i t
250 // ha l f s e a r ch comp l e t e == 1 −−> top search i s happenning
251 // Previous ray had a t l e a s t 1 h i t and current ray has no h i t s .
252 up r a y f i n i s h = 1 ;
253 // Stop sea rch ing along ray which cont inuous ly g i v e s a miss
254 ray ang l e = 500 ;
255 // Stop K i l l Zone Search − big number to get out o f both the loops
256 }
257 }
258 } // ray search ge t s over here
259
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260 // DECIDING HOW TO PROCEED TO NEXT RAY
261 i f ( ha l f s e a r ch comp l e t e == 0)
262 {
263 // increment bottom search ray angle by 10 degree
264 i f ( r ay ang l e == 180)
265 {
266 f i n a l 1 8 0 h i t r a n g e = h i t a r r a y [ h i t c oun t e r − 1 ] ;
267 p r e v i o u s f i n a l h i t r a n g e = f i n a l 1 8 0 h i t r a n g e ;
268 }
269 e l s e
270 {
271 p r e v i o u s f i n a l h i t r a n g e = h i t a r r a y [ h i t c oun t e r − 1 ] ;
272 }
273 ray ang l e = ray ang l e + 5 ;
274 }
275 e l s e // ha l f s e a r ch comp l e t e == 1
276 {
277 // decrement top search ray angle by 10 degree
278 i f ( r ay ang l e != 180)
279 {
280 p r e v i o u s f i n a l h i t r a n g e = h i t a r r a y [ h i t c oun t e r − 1 ] ;
281 }
282 ray ang l e = ray ang l e − 5 ;
283 }
284 }
285 } // end o f FOR LOOP
286 return ; /∗ . . . and return ∗/
287 }

1 %% DATA PREPARE SIMPLE.M
2 %% PREPARE KILL ZONE DAT FILES FOR PLOTTING
3 range f i l ename = ' out range .da t ' ;
4 s t x f i l e n ame = ' ou t s t x . da t ' ;
5 s t y f i l e n ame = ' ou t s t y . da t ' ;
6 f i l e name 1 = ' S imu la t i on Resu l t s / Fl ight Cdtn ' ;
7 f o r i = 6 :10
8 % i = 1 ;
9 f l i ght number path = s t r c a t ( f i l e name 1 , num2str ( i ) ) ;

10 cd ( f l i ght number path ) ;
11 f i l e s t r u c t = d i r ;
12 numdi rec tor i e s ( i ) = sum ( [ f i l e s t r u c t . i s d i r ] ) − 2 ;
13 cd . .
14 cd . .
15 end
16
17 f o r k = 6:10
18 % f o r each and every ray − each ray i s an i n i t i a l cond i t i on
19 f o r i = 1 : numdi rec to r i e s ( k )
20 sim number = num2str ( i ) ;
21 f l t cdtn number = num2str (k ) ;
22 f l i ght number path = s t r c a t ( f i l e name 1 , f l t cdtn number ) ;
23 f i l e name 2 = ' / Simulated IC ' ;
24 f i l e name 3 = ' Resu l t s ' ;
25 fo lder name = s t r c a t ( f l i ght number path , f i l e name 2 , . . .
26 sim number , f i l e name 3 ) ;
27 cd ( fo lder name ) ;
28
29 f i l e ID = fopen ( range f i l ename , ' r+b ' ) ;
30 temp h i t range ar ray = f read ( f i l e ID , 50000 , ' ∗ f l o a t ' ) ;
31 f c l o s e ( f i l e ID ) ;
32
33 f i l e ID = fopen ( s tx f i l e name , ' r+b ' ) ;
34 t emp h i t s tx a r r ay = f read ( f i l e ID , 50000 , ' ∗ f l o a t ' ) ;
35 f c l o s e ( f i l e ID ) ;
36
37 f i l e ID = fopen ( s ty f i l e name , ' r+b ' ) ;
38 t emp h i t s ty a r r ay = f read ( f i l e ID , 50000 , ' ∗ f l o a t ' ) ;
39 f c l o s e ( f i l e ID ) ;
40 cd . .
41 cd . .
42 cd . .
43
44 % Prepare exact array from big array which has l o t o f z e ro s
45 f o r j = 1 : l ength ( t emp h i t s t x a r r ay )
46 i f ( t emp h i t range ar ray ( j ) > 0)
47 h i t r ang e a r r ay ( j ) = temp h i t range ar ray ( j ) ;
48 h i t s t x a r r a y ( j ) = temp h i t s tx a r r ay ( j ) ;
49 h i t s t y a r r a y ( j ) = temp h i t s ty a r r ay ( j ) ;
50 end
51 end
52
53 [ min range , min index ] = min ( h i t r ang e a r r ay ) ;
54 [ max range , max index ] = max( h i t r ang e a r r ay ) ;
55 i n i t i a l h i t x ( i ) = h i t s t x a r r a y ( min index ) ;
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56 i n i t i a l h i t y ( i ) = h i t s t y a r r a y ( min index ) ;
57 f i n a l h i t x ( i ) = h i t s t x a r r a y (max index ) ;
58 f i n a l h i t y ( i ) = h i t s t y a r r a y (max index ) ;
59
60 c l e a r t emp h i t range ar ray ;
61 c l e a r t emp h i t s tx a r r ay ;
62 c l e a r t emp h i t s ty a r r ay ;
63 c l e a r h i t r ang e a r r ay ;
64 c l e a r h i t s t x a r r a y ;
65 c l e a r h i t s t y a r r a y ;
66
67 end
68
69 h i t x = [ i n i t i a l h i t x ' ; f i n a l h i t x ' ] ;
70 h i t y = [ i n i t i a l h i t y ' ; f i n a l h i t y ' ] ;
71 da t f i l e name = s t r c a t ( ' k i l l z o n e ' , f l t cdtn number , ' data.mat ' ) ;
72 cd ( ' Ki l l Zone Dat F i l e s ' ) ;
73 save ( da t f i l e name ) ;
74 cd . .
75 end

1 %% PLOT KILL ZONE.M
2 c l e a r a l l ; c l c ;
3 f o r l = 9:−1:1
4 name 1 = ' k i l l z o n e ' ;
5 name 2 = ' data.mat ' ;
6 data num = num2str ( l ) ;
7 f i l e name = s t r c a t ( name 1 , data num , name 2 ) ;
8 load ( f i l e name ) ;
9 A = double ( h i t x ) ;

10 B = double ( h i t y ) ;
11 k = boundary (A,B) ;
12 switch ( l )
13 case 1
14 c o l o r v e c t o r = [0 . 5 . 1 ] ;
15 case 2
16 c o l o r v e c t o r = [ . 5 . 8 . 1 ] ;
17 case 3
18 c o l o r v e c t o r = [ . 8 . 5 . 1 ] ;
19 case 4
20 c o l o r v e c t o r = [ . 9 . 1 . 4 ] ;
21 case 5
22 c o l o r v e c t o r = [ . 5 . 5 . 8 ] ;
23 case 6
24 c o l o r v e c t o r = [ . 5 0 . 1 ] ;
25 case 7
26 c o l o r v e c t o r = [0 . 1 0 . 9 0 . 2 ] ;
27 case 8
28 c o l o r v e c t o r = [0 . 8 0 . 8 0 . 1 ] ;
29 case 9
30 c o l o r v e c t o r = [0 . 1 0 . 2 0 . 3 ] ;
31 case 10
32 c o l o r v e c t o r = [0 . 9 0 . 8 0 . 7 ] ;
33 end
34 patch (A(k ) ,B(k ) , c o l o r v e c t o r )
35 hold on ;
36 end
37
38 p lo t (0 ,0 , ' r ∗ ' , ' MarkerSize ' , 20)
39 hold on ;
40
41
42 gr id on ;
43 t i t l e ( ' Ki l l Zone as a Function o f I n i t i a l M i s s i l e Mach ' , ' f o n t s i z e ' , 24)
44 legend ({ 'Mach = 1 .7 ' , 'Mach = 1 .6 ' , 'Mach = 1 .5 ' , 'Mach = 1 .4 ' , . . .
45 'Mach = 1 .3 ' , 'Mach = 1 .2 ' , 'Mach = 1 .1 ' , 'Mach = 1 .0 ' , . . .
46 'Mach = 0 .8999 ' , ' Mi s s i l e Locat ion ' } , ' Locat ion ' , ' Best ' ) ;
47 s e t ( gcf , ' PaperPositionMode ' , ' auto ' ) ;
48 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
49 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
50 s e t (h , 'LineWidth ' , 3 ) ;
51 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
52 s e t ( a , ' l i n ew idth ' , 6 ) ;
53 ax = gca ;
54 x vec to r = 0 : 5 : 2 5 ;
55 y vec to r = −25:5 :25 ;
56 s e t ( ax , 'XTickLabel ' ,{ x vec to r })
57 s e t ( ax , 'YTickLabel ' ,{ y vec to r })
58 s e t (a , ' FontSize ' , 2 4 ) ;
59 hold o f f
60 x l ab e l ( 'X ( k f t ) ' , ' f o n t s i z e ' , 2 4 ) ;
61 y l ab e l ( 'Y ( k f t ) ' , ' f o n t s i z e ' , 2 4 ) ;

263



www.manaraa.com

APPENDIX B

MATLAB CODE - MISSILE PLANT & AUTOPILOT ANALYSIS
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1 %========================================================================+
2 % M− f i l e ” b t t l i n r .m ” SOLVES FOR THE NON−DIMENSIONAL STABILITY
3 % DERIVATIVES OF THE NON−DIMENSIONAL ( i . e . , SCALED) STATE−SPACE SYSTEM.
4 % THIS M−FILE ALSO FORMS THE A, B, C & D STATE−SPACE MATRICES OF
5 % LINEAR MODEL.
6 %
7 % Written by : Venkatraman Renganathan
8 % −−−−−−−−−−− (480)628−9124 (Mobile Number) %
9 %========================================================================+

10
11 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12 % Reference ( trim va lues ) Inputs to the L i n e r i z a t i o n Procedure :
13 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
14 mach array = [1 .068 1 .5114 2 .0420 ] ;
15 th ru s t a r r ay = [600 1400 2000 ] ;
16 mach length = length ( mach array ) ;
17
18 f o r j j =1:2
19
20 a l t i t r e f = 30000 .00 ; % Mi s s i l e Geometric Al t i tude Reference Value [ f t ]
21 a l pha r e f = 14 ; % Mi s s i l e Angle o f Attack Reference Value [ deg ]
22 b e t a r e f = 0 . 0 ; % Mi s s i l e Side−s l i p Reference Value [ deg ]
23 d e lP r e f = 0 . 0 ; % ”Rol l ” Fin De f l e c t i on Reference Value [ deg ]
24 de lR r e f = 0 . 0 ; % ”Yaw” Fin De f l e c t i on Reference Value [ deg ]
25 P re f = 0 . 0 ; % Rol l Rate Reference Value [ rad/ s ]
26 Q re f = 0 . 0 ; % Pitch Rate Reference Value [ rad/ s ]
27 R re f = 0 . 0 ; % Yaw Rate Reference Value [ rad/ s ]
28 Ph i r e f = 0 . 0 ; % Bank Angle Reference Value [ deg ]
29 Theta re f = 0 . 0 ; % Att i tude Angle [ deg ]
30 P s i r e f = 0 . 0 ; % Heading Angle [ deg ]
31 ThrustX = th ru s t a r r ay ( j j ) ; % Sea Level 2nd Stage Thrust Force in
32 % the Body X−d i r e c t i o n [ l b f ]
33
34 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
35 % Actuator Dynamics ( parameters ) :
36 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
37 KdelP = 1 .0 ; % E f f e c t i v e ”Rol l ” actuator c losed−loop gain
38 KdelR = 1 .0 ; % E f f e c t i v e ”Yaw” actuator c losed−loop gain
39 KdelQ = 1 .0 ;
40 tau delP = .005 ; % E f f e c t i v e ”Rol l ” Actuator time constant [ s ec ]
41 tau delR = .005 ; % E f f e c t i v e ”Yaw” Actuator time constant [ s ec ]
42 tau delQ = .005 ; % E f f e c t i v e ”Pitch ” Actuator time constant [ s ec ]
43
44 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
45 % Set Aerodynamic Co e f f i c i e n t I t e r a t i o n Loop Absolute Error C r i t e r i a
46 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
47 e r r c r i t = 0 .005 ;
48
49 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
50 % Other Aerodynamic , Mass , and I n e r t i a Parameters :
51 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
52 Lre f = 0 .625 ; % Aerodynamic Reference Length [ f t ]
53 S r e f = 0 .307 ; % Aerodynamic Reference Area [ f t ˆ2 ]
54 mass = 5 .75 ; % Mi s s i l e Mass [ s lug ]
55 Ixx = 0 .34 ; % Mi s s i l e Body Frame X−Comp. o f I n e r t i a ( Fuel Spent ) :
56 Iyy = 34 .10 ; % Mi s s i l e Body Frame X−Comp. o f Mass Moment [ s lug / f t ˆ2 ]
57 I z z = 34 .10 ; % Mi s s i l e Body Frame X−Comp. o f Mass Moment [ s lug / f t ˆ2 ]
58 xcg = 0 .0 ; %.525 Fina l Locat ion o f Center o f Mass [ f t ]
59
60 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
61 % Calcu la te Atmospheric Prope r t i e s :
62 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
63 % [ rho , SOS,Patm ,Tatm , grav i ty , drho dz , dSOS dz ] = atmos ( abs ( a l t i t r e f ) ) ;
64 [ rho , SOS, g rav i ty ] = Compute Altitude Parameters ( a l t i t r e f ) ;
65
66 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
67 % In t e r a t e f o r Mach Number , de lQ re f , and Aerodynamic Co e f f i c i e n t s :
68 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
69
70 %======================================================
71 % Correct Sea Level Thrust f o r Al t i tude ( a i r dens i ty ) :
72 %======================================================
73 rho sea = 0 .0024 ; % Sea Level Air Density [ s lug / f t 3 ]
74 ThrustX = ThrustX ∗( rho/ rho sea ) ; % Corrected Propu l s ive Thrust [ l b f ]
75
76 %=======================================================
77 % Load Aerodynamic Tables ( execute m− f i l e ” aerodat.m ” ) :
78 %=======================================================
79 aerodat
80
81 %================================
82 % Guess Mach Number and de lQ re f
83 %================================
84 Mach ref = mach array ( j j ) ;
85 de lQ re f = 1 . 0 ; % [ deg ]
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86 e r r o r = 1 .0 ;
87 icount = 0 ;
88
89 %======================
90 % Begin I t e r a t i o n Loop
91 %======================
92 whi le e r r o r > e r r c r i t
93
94 Vb = SOS∗Mach ref ;
95 Vb old = Vb;
96
97 % Use Absolute Values o f Alpha re f and Beta r e f f o r most I n t e r p o l a t i o n s :
98 absAlp = abs ( a l pha r e f ) ;
99 absBet = abs ( b e t a r e f ) ;

100
101 % Use ”Pitch ” Fin De f l e c t i on to Determine Sign o f delQAlp :
102 i f d e lQ re f >= 0 .0
103 delQAlp = abs ( a l pha r e f ) ;
104 e l s e
105 delQAlp = −1. 0 ∗abs ( a l pha r e f ) ;
106 end
107
108 % Use ”Yaw” Fin De f l e c t i on to Determince Sign o f delRBet :
109 i f d e lR r e f >= 0 .0
110 delRBet = abs ( b e t a r e f ) ;
111 e l s e
112 delRBet = −1. 0 ∗abs ( b e t a r e f ) ;
113 end
114
115 %========================================================================
116 % In t e r po l a t e f o r Drag Co e f f i c i e n t CD=CD( alpha , delQ ,M) :
117 % CD i s a three dimens ional array in a c t u a l i t y ; however , MATLAB only
118 % supports i n t e r p o l a t i o n o f 2−D Table s . Thus , we w i l l car ry out 2−D
119 % in t e r p o l a t i o n between a fami ly o f 2−D tab l e s in the x and y d i r e c t i o n s
120 % ( alpha and delQ , r e s p e c t i v e l y ) and then l i n e a r l y i n t e r p o l a t e between
121 % these two va lues f o r the f i n a l z−d i r e c t i o n (Mach number ) :
122 %========================================================================
123 i f Mach ref <= 1 .0
124 Mach lo = 0 .9 ;
125 Mach hi = 1 .0 ;
126 CDlo = inte rp2 (TdelQ ' , Talpha1 ,TCD1, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
127 CDhi = in t e rp2 (TdelQ ' , Talpha1 ,TCD2, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
128
129 e l s e i f Mach ref <= 1 .1
130 Mach lo = 1 .0 ;
131 Mach hi = 1 .1 ;
132 CDlo = inte rp2 (TdelQ ' , Talpha1 ,TCD2, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
133 CDhi = in t e rp2 (TdelQ ' , Talpha1 ,TCD3, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
134
135 e l s e i f Mach ref <= 1 .3
136 Mach lo = 1 .1 ;
137 Mach hi = 1 .3 ;
138 CDlo = inte rp2 (TdelQ ' , Talpha1 ,TCD3, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
139 CDhi = in t e rp2 (TdelQ ' , Talpha1 ,TCD4, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
140
141 e l s e i f Mach ref <= 1 .5
142 Mach lo = 1 .3 ;
143 Mach hi = 1 .5 ;
144 CDlo = inte rp2 (TdelQ ' , Talpha1 ,TCD4, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
145 CDhi = in t e rp2 (TdelQ ' , Talpha1 ,TCD5, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
146
147 e l s e i f Mach ref <= 2 .0
148 Mach lo = 1 .5 ;
149 Mach hi = 2 .0 ;
150 CDlo = inte rp2 (TdelQ ' , Talpha1 ,TCD5, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
151 CDhi = in t e rp2 (TdelQ ' , Talpha1 ,TCD6, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
152
153 e l s e i f Mach ref <= 2 .5
154 Mach lo = 2 .0 ;
155 Mach hi = 2 .5 ;
156 CDlo = inte rp2 (TdelQ ' , Talpha1 ,TCD6, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
157 CDhi = in t e rp2 (TdelQ ' , Talpha1 ,TCD7, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
158
159 e l s e i f Mach ref <= 3 .0
160 Mach lo = 2 .5 ;
161 Mach hi = 3 .0 ;
162 CDlo = inte rp2 (TdelQ ' , Talpha1 ,TCD7, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
163 CDhi = in t e rp2 (TdelQ ' , Talpha1 ,TCD8, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
164
165 e l s e i f Mach ref <= 4 .0
166 Mach lo = 3 .0 ;
167 Mach hi = 4 .0 ;
168 CDlo = inte rp2 (TdelQ ' , Talpha1 ,TCD8, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
169 CDhi = in t e rp2 (TdelQ ' , Talpha1 ,TCD9, de lQ re f , absAlp , ' b i l i n e a r ' ) ;
170 end
171
172 % In t e r p l o a t e in the z−d i r e c t i o n (Mach ) : L inea r ly i n t e r p o l a t e between
173 % the two i n t e rpo l a t ed t ab l u l a r va lues CDlo and CDhi.
174 vv = (Mach ref − Mach lo )/( Mach hi − Mach lo ) ;
175 CD = (1 . 0 − vv )∗CDlo + vv∗CDhi ;
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176
177
178 %===================================================================
179 % In t e r po l a t e f o r the Other Aerodynamic Co e f f i c i e n t s :
180 % (NOTE: I n t e r p o l a t i o n func t i on s r e qu i r e that r e f e r e n c e v a r i a b l e s
181 % [ e . g . , Mach ref , a lpha r e f , e t c . ] l i e with in the tabu la r va lues −
182 % an e r r o r w i l l occur i f t h i s i s not the case )
183 %===================================================================
184
185 %===========================
186 % CDT = CDT(M) :
187 %===========================
188 CDT = inte rp1 (Tmach2 ,TCDT, Mach ref ) ;
189
190 %===========================
191 % CLbeta = CLbeta ( alpha ,M) :
192 %===========================
193 CLbeta = inte rp2 (Tmach1 ' , Talpha1 , TCLbeta , Mach ref , absAlp , ' b i l i n e a r ' ) ;
194
195 %===========================
196 % CLdelP = CLdelP ( alpha ,M) :
197 %===========================
198 CLdelP = inte rp2 (Tmach1 ' , Talpha1 , TCLdelP , Mach ref , absAlp , ' b i l i n e a r ' ) ;
199
200 %===========================
201 % CLP = CLP( alpha ,M) :
202 %===========================
203 CLP = inte rp2 (Tmach1 ' , Talpha3 ,TCLP, Mach ref , absAlp , ' b i l i n e a r ' ) ;
204
205 %=============================
206 % CMalpha = CMalpha( alpha ,M) :
207 %=============================
208 CMalpha = inte rp2 (Tmach1 ' , Talpha4 ,TCMalpha , Mach ref , absAlp , ' b i l i n e a r ' ) ;
209
210 %==============================
211 % CMQ = CMQ( alpha ,M) :
212 %==============================
213 CMQ = inte rp2 (Tmach2 ' , Talpha3 ,TCMQ, Mach ref , absAlp , ' b i l i n e a r ' ) ;
214
215 %==============================
216 % CMdelQ = CMdelQ( alpha ,M) :
217 %==============================
218 CMdelQ = inte rp2 (Tmach1 ' , Talpha2 ,TCMdelQ, Mach ref , delQAlp , ' b i l i n e a r ' ) ;
219
220 %==============================
221 % CNalpha = CNalpha (M) :
222 %==============================
223 CNalpha = inte rp1 (Tmach1 , TCNalpha , Mach ref ) ;
224
225 %==============================
226 % CNbeta = CNbeta ( alpha ,M) :
227 %==============================
228 CNbeta = inte rp2 (Tmach1 ' , Talpha1 , TCNbeta , Mach ref , absAlp , ' b i l i n e a r ' ) ;
229
230 %==============================
231 % CNdelR = CNdelR( beta ,M) :
232 %==============================
233 CNdelR = inte rp2 (Tmach1 ' , Tbeta1 ,TCNdelR , Mach ref , delRBet , ' b i l i n e a r ' ) ;
234
235 %==============================
236 % CNdelQ = CNdelQ( alpha ,M) :
237 %==============================
238 CNdelQ = inte rp2 (Tmach1 ' , Talpha2 ,TCNdelQ , Mach ref , delQAlp , ' b i l i n e a r ' ) ;
239
240 %==============================
241 % CNR = CNR( beta ,M) :
242 %==============================
243 CNR = inte rp2 (Tmach2 ' , Tbeta2 ,TCNR, Mach ref , absBet , ' b i l i n e a r ' ) ;
244
245 %==============================
246 % CYbeta = CYbeta ( alpha ,M) :
247 %==============================
248 CYbeta = inte rp2 (Tmach1 ' , Talpha1 , TCYbeta , Mach ref , absAlp , ' b i l i n e a r ' ) ;
249
250 %==============================
251 % CYdelR = CYdelR( beta ,M) :
252 %==============================
253 CYdelR = inte rp2 (Tmach1 ' , Tbeta1 ,TCYdelR , Mach ref , delRBet , ' b i l i n e a r ' ) ;
254
255 %======================================================================
256 % Correct s i gn s o f CLbeta and CMalpha to agree with s i gn o f a l pha r e f :
257 %======================================================================
258 i f a l pha r e f < 0 . 0
259 CLbeta = −1. 0 ∗CLbeta ;
260 CMalpha = −1. 0 ∗CMalpha ;
261 end
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262
263 Theta rad = Theta re f ∗ pi /180 . ;
264 Phi rad = Ph i r e f ∗ pi /180 . ;
265
266 Vbtemp = −2 . ∗(mass∗ g rav i ty ∗ s i n ( Theta rad ) + ThrustX )/ . . .
267 ( rho∗ Sr e f ∗(CD+CDT) ) ;
268 Vb = sqr t (Vbtemp ) ;
269 Mach ref = Vb/SOS ;
270 i f Mach ref > 4 . 0
271 Mach ref = 4 . 0 ;
272 e l s e i f Mach ref < 0 . 9
273 Mach ref = 0 . 9 ;
274 end
275
276 %=====================================================================
277 % Calcu la te E f f e c t i v e Elevator De f l e c t i on Trim Values :
278 %=====================================================================
279 de lQ re f = −(CMalpha/CMdelQ)∗ a l pha r e f ;
280
281 i f d e lQ re f > 20
282 de lQ re f = 20 ;
283 e l s e i f d e lQ re f < −20
284 de lQ re f = −20;
285 end
286
287 Vb new = Vb;
288 e r r o r = abs ( ( ( Vb new − Vb old )/Vb new) ) ;
289
290 i f i count >= 20 % Exit ”whi le ” statement a f t e r 20 i t e r a t i o n s
291 e r r o r = 0 ;
292 end
293 icount = icount + 1 ;
294
295 end
296
297 % Fina l l y s e t the m i s s i l e v e l o c i t y with Mach value s a t i s f y i n g the t r im .
298 Vb = SOS∗Mach ref ;
299 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
300 % End o f I t e r a t i o n Loop
301 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
302
303 % Clear in te rmed ia te v a r i a b l e s :
304 c l e a r Mach lo ;
305 c l e a r Mach hi ;
306 c l e a r CDlo ;
307 c l e a r CDhi ;
308 c l e a r vv ;
309 c l e a r Theta rad ;
310 c l e a r Phi rad ;
311 c l e a r Vb old ;
312 c l e a r Vb new ;
313 c l e a r i count ;
314 c l e a r e r r o r ;
315 c l e a r e r r c r i t ;
316
317 % Clear Aerodynamic Tables to Free Memory :
318 c l e a r Talpha1 ;
319 c l e a r Talpha2 ;
320 c l e a r Talpha3 ;
321 c l e a r Talpha4 ;
322 c l e a r Tbeta1 ;
323 c l e a r Tbeta2 ;
324 c l e a r TdelQ ;
325 c l e a r Tmach1 ;
326 c l e a r Tmach2 ;
327 c l e a r TCD1;
328 c l e a r TCD2;
329 c l e a r TCD3;
330 c l e a r TCD4;
331 c l e a r TCD5;
332 c l e a r TCD6;
333 c l e a r TCD7;
334 c l e a r TCD8;
335 c l e a r TCD9;
336 c l e a r TCDT;
337 c l e a r TCLbeta ;
338 c l e a r TCLdelP ;
339 c l e a r TCLP;
340 c l e a r TCMalpha ;
341 c l e a r TCMdelQ ;
342 c l e a r TCMQ;
343 c l e a r TCNalpha ;
344 c l e a r TCNbeta ;
345 c l e a r TCNdelR ;
346 c l e a r TCNdelQ ;
347 c l e a r TCNR;
348 c l e a r TCYbeta ;
349 c l e a r TCYdelR ;
350
351 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
352 % Calcu la te Mi s s i l e ' s Ve loc i ty Magnitude and Dynamic Pressure :
353 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
354 Vb = SOS∗Mach ref ;
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355 Qdp = 0 .5 ∗ rho∗Vb∗Vb;
356 Qsl = Qdp∗ Sr e f ∗Lre f ;
357
358 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
359 % Calcu la te Trim Values o f Aerodynamic Forces and Moment Co e f f i c i e n t s :
360 % CX = −(Fgx + ThrustX )/(Qdp∗ Sr e f )
361 % CY = −( xcg∗mass∗N/ Izz + Fgy/(Qdp∗ Sr e f ) )
362 % CZ = −( −xcg∗mass∗M/Iyy + Fgz /(Qdp∗ Sr e f ) )
363 % CL = 0
364 % CM = −Mg/(Qdp∗ Sr e f ∗Lre f )
365 % CN = −Ng/(Qdp∗ Sr e f ∗Lre f )
366 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
367 theta = Theta re f /57 .2958 ;
368 phi = Ph i r e f /57 .2958 ;
369 CL = 0 ;
370 CM = xcg∗mass∗ g rav i ty ∗ cos ( theta )∗ cos ( phi )/ Qsl ;
371 CN = −xcg∗mass∗ g rav i ty ∗ cos ( theta )∗ s i n ( phi )/ Qsl ;
372 CX = (mass∗ g rav i ty ∗ s i n ( theta ) − ThrustX )/(Qdp∗ Sr e f ) ;
373 CY = −(mass∗ g rav i ty ∗ cos ( theta )∗ s i n ( phi )/ (Qdp∗ Sr e f ) + . . .
374 mass∗xcg∗Lre f ∗CN/ Izz + . . .
375 xcg∗xcg∗mass∗mass∗ g rav i ty ∗ cos ( theta )∗ cos ( phi )/ (Qdp∗ Sr e f ∗ I z z ) ) ;
376 CZ = −(mass∗ g rav i ty ∗ cos ( theta )∗ cos ( phi )/ (Qdp∗ Sr e f ) − . . .
377 mass∗xcg∗Lre f ∗CM/Iyy + . . .
378 xcg∗xcg∗mass∗mass∗ g rav i ty ∗ cos ( theta )∗ s i n ( phi )/ (Qdp∗ Sr e f ∗ Iyy ) ) ;
379
380
381 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
382 % Calcu la te S t a b i l i t y Der i va t i v e s :
383 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
384 % The aerodynamic c o e f f i c i e n t s i n t e rpo l a t ed above are not a l l
385 % d imen s i on l e s s . Some have dimensions o f [ degˆ−1] . They w i l l be
386 % made d ime s i on l e s s below by the proper conver s ion o f degrees
387 % to rad ians ( i . e . , 57 .2958 [ deg/ rad ] ) .
388 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
389 tau t ime = (mass∗Vb/(Qdp∗ Sr e f ) ) ; % Time s c a l e f a c t o r [ s ec ]
390 g hat = (mass∗ g rav i ty )/(Qdp∗ Sr e f ) ; % Non−dimens ional g rav i ty
391 alpha = a l pha r e f ∗ pi /180 . ; % put a l pha r e f in rad ians
392 deg2rad = pi /180 . ;
393
394 %==============================================
395 % X−Component o f Acce l e r a t i on ( Pr i n c i pa l Axis ) :
396 %==============================================
397 x u = 2∗CX∗ cos ( alpha ) ;
398 x v = 0 .0 ;
399 x w = 2∗CX∗ s i n ( alpha ) ;
400 x p = 0 .0 ;
401 x q = −s i n ( alpha ) ;
402 x r = 0 .0 ;
403 x phi = 0 . 0 ;
404 x the t =−g hat ∗ cos ( Theta re f ∗deg2rad ) ;
405 x delP = 0 .0 ;
406 x delQ = 0 .0 ;
407 x delR = 0 .0 ;
408
409 %==============================================
410 % Y−Component o f Acce l e r a t i on ( P r i c i p a l Axis ) :
411 %==============================================
412 y u = 2∗CY∗ cos ( alpha ) ;
413 y v = CNbeta∗deg2rad ; % Most S t a b i l i t y d e r i v a t i v e s are in
414 y w = 2∗CY∗ s i n ( alpha ) ; % un i t s o f [ 1/ deg ] and we need to
415 y p = s in ( alpha ) ; % convert them into r ad i an s .
416 y q = 0 .0 ;
417 y r =−cos ( alpha ) ;
418 y phi = g hat ∗ cos ( Theta re f ∗deg2rad ) ;
419 y the t = 0 .0 ;
420 y delP = 0 .0 ;
421 y delQ = 0 .0 ;
422 y delR = CYdelR∗deg2rad ;
423
424 %==============================================
425 % Z−Component o f Acce l e r a t i on ( Pr i n c i pa l Axis ) :
426 %==============================================
427 z u = 2∗CZ∗ cos ( alpha ) − CNalpha∗ s i n ( alpha )∗ deg2rad ;
428 z v = 0 .0 ;
429 z w = 2∗CZ∗ s i n ( alpha ) + CNalpha∗ cos ( alpha )∗ deg2rad ;
430 z p = 0 .0 ;
431 z q = cos ( alpha ) ;
432 z r = 0 .0 ;
433 z ph i = 0 . 0 ;
434 z th e t =−g hat ∗ s i n ( Theta re f /57 .2985 ) ;
435 z de lP = 0 .0 ;
436 z delQ = CNdelQ∗deg2rad ;
437 z delR = 0 .0 ;
438
439 %======================================================
440 % X−Component o f Angular Acce l e r a t i on ( Pr i n c i pa l Axis ) :
441 %======================================================
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442 l u = 0 .0 ;
443 l v = (2∗mass∗mass∗Lre f /( rho∗ Sr e f ∗ Ixx ) )∗CLbeta∗deg2rad ;
444 l w = 0 .0 ;
445 l p = (0 . 5 ∗mass∗Lre f ∗Lre f / Ixx )∗CLP;
446 l q = 0 .0 ;
447 l r = 0 . 0 ;
448 l p h i = 0 . 0 ;
449 l t h e t = 0 .0 ;
450 l d e lP = (2∗mass∗mass∗Lre f /( rho∗ Sr e f ∗ Ixx ) )∗CLdelP∗deg2rad ;
451 l de lQ = 0 .0 ;
452 l de lR = 0 .0 ;
453
454 %======================================================
455 % Y−Component o f Angular Acce l e r a t i on ( Pr i n c i pa l Axis ) :
456 %======================================================
457 m u =−(2∗mass∗mass∗Lre f /( rho∗ Sr e f ∗ Iyy ) )∗CMalpha∗ s i n ( alpha )∗ deg2rad ;
458 m v = 0 .0 ;
459 m w = (2∗mass∗mass∗Lre f /( rho∗ Sr e f ∗ Iyy ) )∗CMalpha∗ cos ( alpha )∗ deg2rad ;
460 m p = 0 .0 ;
461 m q = (0 . 5 ∗mass∗Lre f ∗Lre f / Iyy )∗CMQ;
462 m r = 0 .0 ;
463 m phi = 0 .0 ;
464 m thet = 0 .0 ;
465 m delP = 0 .0 ;
466 m delQ = (2∗mass∗mass∗Lre f /( rho∗ Sr e f ∗ Iyy ) )∗CMdelQ∗deg2rad ;
467 m delR = 0 .0 ;
468
469 %======================================================
470 % Z−Component o f Angular Acce l e r a t i on ( Pr i n c i pa l Axis ) :
471 %======================================================
472 n u = 0 .0 ;
473 n v = (2∗mass∗mass∗Lre f /( rho∗ Sr e f ∗ I z z ) )∗CNbeta∗deg2rad ;
474 n w = 0 .0 ;
475 n p = 0 .0 ;
476 n q = 0 .0 ;
477 n r = (0 . 5 ∗mass∗Lre f ∗Lre f / I z z )∗CNR;
478 n phi = 0 .0 ;
479 n thet = 0 .0 ;
480 n delP = 0 .0 ;
481 n delQ = 0 .0 ;
482 n delR = (2∗mass∗mass∗Lre f /( rho∗ Sr e f ∗ I z z ) )∗CNdelR∗deg2rad ;
483
484 %======================================================
485 % Constants needed f o r c o n t r o l l e r s t a t e space
486 %======================================================
487 K 1 = 7 ;
488 K 2 = −10;
489 K 3 = 0 .5 ;
490 K 4 = 500 ;
491 K 5 = −1.75 ;
492 K 6 = −1500;
493 K 7 = −5000;
494 K 10 = K 2 ∗ ( (1/Qdp)−(1/Vb ) ) ;
495 K 11 = −K 2∗ Sr e f ∗CNalpha/mass ;
496 a zeq = 2573 .12 ;
497 a yeq = 0 .5 ;
498 a 1 = K 4/Qdp ;
499 a 2 = CLbeta/CLdelP ;
500 a 3 = K 5 + K 6/Qdp ;
501 a 4 = CMalpha/CMdelQ ;
502 a 5 = K 7/Qdp ;
503 a 6 = CNbeta/CNdelR ;
504 a 7 = −38028 .00305929 ; % −omegaˆ2
505 a 8 = −117 .00462 ; % −2∗zeta ∗omega
506 a 9 = 38028 .00305929 ; % omegaˆ2
507
508 b 1 = −s i n ( a l pha r e f ) ;
509 b 2 = cos ( a l pha r e f ) ;
510
511
512 %% ===============================================================
513 % Def ine Linear State−Space System ( i . e . , A, B, and C matr i ces ) :
514 % ( The s t a t e vector , f o r r e f e r enc e , i s x=[u v w p q r phi theta ] '
515 % and the con t r o l vec tor i s u=[delP delQ delR ] ' )
516 %===============================================================
517
518 A = [ x u x v x w x p x q x r x phi x the t ;
519 y u y v y w y p y q y r y phi y the t ;
520 z u z v z w z p z q z r z ph i z th e t ;
521 l u l v l w l p l q l r l p h i l t h e t ;
522 m u m v m w m p m q m r m phi m thet ;
523 n u n v n w n p n q n r n phi n thet ;
524 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0 ;
525 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 0 . 0 0 . 0 ] ;
526
527 B = [0 . 0 0 . 0 0 . 0 ;
528 0 . 0 0 . 0 y delR ;
529 0 . 0 z delQ 0 . 0 ;
530 l d e lP 0 . 0 0 . 0 ;
531 0 . 0 m delQ 0 . 0 ;
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532 0 . 0 0 . 0 n delR ;
533 0 . 0 0 . 0 0 . 0 ;
534 0 . 0 0 . 0 0 . 0 ] ;
535
536 C = [ y u y v y w y p y q y r y phi 0 ; % a y
537 z u z v z w z p z q z r z ph i z th e t ; % a z
538 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 ; % phi
539 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 ; % theta
540 0 . 0 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 ; % beta
541 b 1 0 . 0 b 2 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 ; % alpha
542 0 . 0 0 . 0 −1. 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 ; % Gamma
543 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0 ; % p
544 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 0 . 0 0 . 0 ; % q
545 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 0 . 0 ] ; % r
546
547 D = [0 . 0 0 . 0 y delR ;
548 0 . 0 z delQ 0 . 0 ;
549 0 . 0 0 . 0 0 . 0 ;
550 0 . 0 0 . 0 0 . 0 ;
551 0 . 0 0 . 0 0 . 0 ;
552 0 . 0 0 . 0 0 . 0 ;
553 0 . 0 0 . 0 0 . 0 ;
554 0 . 0 0 . 0 0 . 0 ;
555 0 . 0 0 . 0 0 . 0 ;
556 0 . 0 0 . 0 0 . 0 ] ;
557
558
559 %% Fol lowing Linear system i s used f o r ana l y s i s OF LONGITUDINAL DYNAMICS
560 %
561 % State s − {Axial Veloc i ty , Ve r t i c a l Veloc i ty , Pitch Rate , Pitch}
562 % Contro l s − {Flapperon De f l e c t i on }
563 % Outputs − {Fl i ght Path Angle , Pitch}
564 %
565 % d/dt [dU = [ X u X w X q −gcos ( theta ) ∗ [ dU + [0 ∗ de l q
566 % dW Z u Z w Z q −gs in ( theta ) dW Z delq
567 % dQ M u M w M q 0 dQ M delq
568 % dTheta ] 0 0 1 0 ] ; dTheta ] 0 ]
569 %
570 % y1 = [1 0 0 0 ] ∗ [dU dW dQ dTheta ] ' +[0] ∗ de l q −> f o r U( s )/ de l q ( s )
571 % y2 = [0 0 0 1 ] ∗ [dU dW dQ dTheta ] ' +[0] ∗ de l q −> f o r theta ( s )/ de l q ( s )
572 % Outputs are a x i a l v e l o c i t y and p i tch
573 %
574
575 A long i tud ina l = [ x u x w x q x the t
576 z u z w z q z th e t
577 m u m w m q m thet
578 0 0 1 0 ] ;
579
580 B long i tud ina l = [0
581 z delQ
582 m delQ
583 0 ] ;
584
585 C long i tud ina l = [0 −1 0 1 ] ; % theta − alpha = gamma
586
587 D long i tud ina l = 0 ;
588
589 %% Fol lowing Linear System Analys i s i s made to study LATERAL DYNAMICS
590 %
591 % State s − {Late ra l Veloc i ty , Rol l rate , Yaw Rate , Rol l Angle}
592 % Contro l s − {Ai le ron De f l e c t i on , Rudder De f l e c t i on }
593 % Outputs − {Roll , Ro l l Rate , S i d e s l i p , Yaw Rate}
594 %
595 % d/dt [dV = [ Y v Y p Y r Y phi ∗ [ dV + [0 y delR ∗ [ delP
596 % dP L v L p L r 0 dP l d e lP 0 delR ]
597 % dR N v 0 N r 0 dR 0 n delR
598 % dphi ] 0 1 0 0 ] dphi ] 0 0 ]
599 %
600 %
601 %
602 %
603 % When we want S i d e s l i p angle and Rol l r a t e as output
604 % Remember dV i s s i d e s l i p ange under assuming e qu i l b . va lue o f V∗ = 0
605 %
606 % s i d e s l i p angle , [ y3 = [1 0 0 0 ∗ [ dV + [0 0 ∗ [ delP
607 % Rol l Rate , y4 ] 0 1 0 0 ] dP 0 0 ] delR ]
608 % dR
609 % dphi ]
610
611 A l a t e r a l = [ y v y p y r y phi
612 l v l p l r 0
613 n v n p n r 0
614 0 1 0 0 ] ;
615
616 B l a t e r a l = [ y delP y delR
617 l d e lP 0
618 0 n delR
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619 0 0 ] ;
620
621 %C l a t e r a l = [1 0 0 0 ] ; % S i d e s l i p angle
622 %C l a t e r a l = [0 1 0 0 ] ; % Rol l r a t e
623 %C l a t e r a l = [0 0 1 0 ] ; % Yaw rate
624 C l a t e r a l = [0 0 0 1 % Rol l Angle
625 1 0 0 0 ] ; % S i d e s l i p angle
626
627 D l a t e r a l = ze ro s ( 2 ) ;
628 %====================================================================
629 % The f o l l ow ing reduced l a t e r a l and l ong i t ud i n a l dynamics were
630 % used to i n v e s t i g a t e the BTT m i s s i l e modes (Appendix E) :
631 %====================================================================
632 Ar la t2 = [ y v y p y r ;
633 l v l p l r ;
634 n v n p n r ] ;
635
636 Ar long2 = [ z w z q ;
637 m w m q ] ;
638
639 nondim time = mass∗Vb/(Qdp∗ Sr e f ) ;
640 fname = ' p l o t s ' ;
641
642 %======================================================================
643 % The f o l l ow ing reduced l a t e r a l and l ong i t ud i n a l dynamics were
644 % used to i n v e s t i g a t e the BTT m i s s i l e modes
645 %======================================================================
646 r edu c ed l ong i t ud i n a l p o l e s = e i g ( Ar long2 ) ;
647 r e d u c e d l a t e r a l p o l e s = e i g ( Ar la t2 ) ;
648 a l l p o l e s = e i g (A) ;
649 a l l z e r o s = tze ro ( s s (A, B, C, D) ) ;
650 l a t e r a l s y s t em po l e s = e i g ( A l a t e r a l ) ;
651 l ong i t ud i n a l s y s t em po l e s = e i g ( A long i tud ina l ) ;
652
653 %% AUTOPILOT CONTROLLER STATE SPACE
654 matr ix 1 = [ a 1 0 0 0 a 2
655 0 a 3 0 a 4 0
656 0 0 a 5 0 a 6
657 0 0 0 0 0 ] ;
658 matr ix 2 = [−1 1 −1 1
659 −1 1 1 −1
660 1 1 −1 −1
661 1 1 1 1 ] ;
662 matr ix 3 = matr ix 2 ∗ matr ix 1 ;
663
664 A con t r o l l e r = [0 1 0 0 0 0 0 0
665 a 7 a 8 0 0 0 0 0 0
666 0 0 0 1 0 0 0 0
667 0 0 a 7 a 8 0 0 0 0
668 0 0 0 0 0 1 0 0
669 0 0 0 0 a 7 a 8 0 0
670 0 0 0 0 0 0 0 1
671 0 0 0 0 0 0 a 7 a 8 ] ;
672 B 1 = [0 0 0 0
673 a 9 0 0 0
674 0 0 0 0
675 0 a 9 0 0
676 0 0 0 0
677 0 0 a 9 0
678 0 0 0 0
679 0 0 0 a 9 ] ;
680
681 B con t r o l l e r = B 1 ∗ matr ix 3 ;
682
683 Gamma matrix = 0 .25 ∗ [−1 −1 1 1
684 1 1 1 1
685 −1 1 −1 1
686 1 −1 −1 1 ] ;
687
688 C hat = [1 0 0 0 0 0 0 0
689 0 0 1 0 0 0 0 0
690 0 0 0 0 1 0 0 0
691 0 0 0 0 0 0 1 0 ] ;
692
693 C con t r o l l e r = Gamma matrix ∗ C hat ;
694 D con t r o l l e r = ze ro s ( 4 , 5 ) ;
695
696 i n n e r l o o p c o n t r o l l e r s t a t e s p a c e = ss ( A cont ro l l e r , B con t ro l l e r , . . .
697 C cont ro l l e r , D con t r o l l e r ) ;
698
699
700 %% Plant Analys i s
701 P = ss (A, B, C, D) ;
702 p l an t z e r o s = tze ro ( s s (A, B, C( 7 , : ) , D( 7 , : ) ) ) ; % with Gamma as output
703 l o n g p l an t z e r o s = tze ro ( s s ( A long i tud ina l , B long i tud ina l , . . .
704 C long i tud ina l , D long i tud ina l ) ) ;
705 l a t e r a l z e r o = tze ro ( s s ( A la t e ra l , B l a t e r a l , C l a t e r a l , D l a t e r a l ) ) ;
706 K = ss ( A cont ro l l e r , B con t r o l l e r , C cont ro l l e r , D con t r o l l e r ) ;
707 s = t f ( ' s ' ) ;
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708 s I = s ∗ eye ( 8 ) ;
709 sI minus A = s I − A;
710 s I minus A inve r s e = sI minus A\eye ( 8 ) ;
711 P l an t t r a n s f e r f u n c t i o n ma t r i c e s = minreal ( zpk (C ∗ . . .
712 s I m inus A inve r s e ∗ B + D) ) ;
713 P l a n t t r a n s f e r f u n c t i o n ma t r i c e s . u = { ' a i l e r o n ' , ' e l e va t o r ' , ' rudder ' } ;
714 P l a n t t r a n s f e r f u n c t i o n ma t r i c e s . y = { 'A y ' , 'A z ' , '\phi ' , . . .
715 '\ theta ' , '\beta ' , '\alpha ' , '\gamma ' , 'P ' , 'Q ' , 'R ' } ;
716 [ plant rows , p l a n t c o l s ] = s i z e ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ) ;
717
718 %% INNERMOST RATE CONTROL LOOP
719
720 s I m inu s A con t r o l l e r = s I − A con t r o l l e r ;
721 s I m i nu s A con t r o l l e r i n v e r s e = s I m inu s A con t r o l l e r \eye ( 8 ) ;
722 Cont ro l l e r t fm = zpk ( minreal ( C con t r o l l e r ( 1 : 3 , : ) ∗ . . .
723 s I m i nu s A con t r o l l e r i n v e r s e ∗ B con t r o l l e r ( : , 1 : 3 ) + . . .
724 D con t r o l l e r ( 1 : 3 , 1 : 3 ) ) ) ;
725 [ c on t r o l l e r r ows , c o n t r o l l e r c o l s ] = s i z e ( Cont ro l l e r t fm ) ;
726 Cont r o l l e r t fm .u = { ' e r r o r p ' , ' e r r o r q ' , ' e r r o r r ' } ;
727 Con t r o l l e r t fm .y = { ' a i l e r o n ' , ' e l e va t o r ' , ' rudder ' } ;
728
729 I n t e r e s t e d p l a n t t f ma t r i c e s = P l an t t r a n s f e r f u n c t i o n ma t r i c e s ( 8 : 1 0 , : ) ;
730 open loop = I n t e r e s t e d p l a n t t f ma t r i c e s ∗ Cont ro l l e r t fm ;
731 [ L rows , L co l s ] = s i z e ( open loop ) ;
732 open loop .u = { ' e r r o r p ' , ' e r r o r q ' , ' e r r o r r ' } ;
733 open loop .y = { 'P ' , 'Q ' , 'R ' } ;
734 s e n s i t i v i t y = minreal ( feedback ( eye ( L rows , L co l s ) , open loop ) ) ;
735 complementa ry sens i t i v i ty = minreal ( feedback ( open loop , . . .
736 eye ( L rows , L co l s ) ) ) ;
737 comp l ementa ry s en s i t i v i t y .u = { 'P c ' , 'Q c ' , 'R c ' } ;
738 comp l ementa ry s en s i t i v i t y . y = { 'P ' , 'Q ' , 'R ' } ;
739 pc to p = complementa ry sens i t i v i ty ( 1 , 1 ) ;
740 qc to q = complementa ry sens i t i v i ty ( 2 , 2 ) ;
741 r c t o r = complementa ry sens i t i v i ty ( 3 , 3 ) ;
742 sens p = s e n s i t i v i t y ( 1 , 1 ) ;
743 sens q = s e n s i t i v i t y ( 2 , 2 ) ;
744 s e n s r = s e n s i t i v i t y ( 3 , 3 ) ;
745
746 %% Intermediate Loop ( alpha , beta , phi c on t r o l loop )
747 % p = d( phi )/ dt ,
748 % q = d( theta )/ dt , where i f f l i g h t path angle i s smal l then , theta = alpha
749 % r = d( p s i )/ dt , where p s i = −be ta . Reference − Babi s te r Book.
750 i n t e g r a t o r = t f ( 1 , [ 1 0 ] ) ;
751 In t eg ra to r Mat r ix (1 , 1 ) = i n t e g r a t o r ;
752 In t eg ra to r Mat r ix (2 , 2 ) = i n t e g r a t o r ;
753 In t eg ra to r Mat r ix (3 , 3 ) = −i n t e g r a t o r ; % because p s i = −beta
754
755 de s i gn p l an t mat r i x = s e r i e s ( complementary sens i t iv i ty , In t eg ra to r Mat r ix ) ;
756
757
758 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
759 % NEW IMPLEMENTATION WITH JESUS HELP
760 % P C = k 1 ∗ e r r o r ph i
761 % Q C = k 11 ∗ e r ro r a lpha , where k 11 = −k 2 ∗C N alpha∗ S r e f / Mass
762 % R C = k 3 ∗ e r ro r be ta ,
763 % e r r o r b e t a = e r r o r b e t a
764 % e r r o r a l pha = e r r o r a l pha
765 % Y = DU, where U = [ e r r o r ph i e r r o r a l pha e r r o r b e t a ]
766 % Y = [ Pc Qc Rc E alpha E beta ]
767 i n t e rm e d i a t e c o n t r o l l e r t f = [ K 1 0 0
768 0 K 11 0
769 0 0 K 3
770 0 1 0
771 0 0 1 ] ;
772 % Pc ,Qc & Rc
773 i n t e r e s t e d i n t e rm e d i a t e c o n t r o l l e r t f = i n t e rm e d i a t e c o n t r o l l e r t f ( 1 : 3 , : ) ;
774 % L = PK, where P = 3∗3 , K = 3∗3
775 i n t e rmed i a t e c on t r o l op en l oop = des i gn p l an t mat r i x ∗ . . .
776 i n t e r e s t e d i n t e rm e d i a t e c o n t r o l l e r t f ;
777
778 ph i c om vs ph i t f = zpk ( minrea l ( . . .
779 feedback ( i n t e rmed i a t e c on t r o l op en l oop (1 , 1 ) , 1 ) ) ) ;
780 s en s ph i channe l = zpk ( minrea l (1 − ph i c om vs ph i t f ) ) ;
781 ph i ps = zpk ( minrea l ( feedback ( de s i gn p l an t mat r i x (1 , 1 ) , . . .
782 i n t e r e s t e d i n t e rm e d i a t e c o n t r o l l e r t f ( 1 , 1 ) ) ) ) ;
783 ph i k s = zpk ( minrea l ( feedback ( . . .
784 i n t e r e s t e d i n t e rm e d i a t e c o n t r o l l e r t f ( 1 , 1 ) , d e s i gn p l an t mat r i x ( 1 , 1 ) ) ) ) ;
785 ph i c om vs ph i t f . u = { '\ ph i {commanded} ' } ;
786 ph i c om v s ph i t f . y = { '\ ph i { ac tua l } ' } ;
787
788 a lpha com vs a lpha t f = zpk ( minrea l ( feedback ( . . .
789 i n t e rmed i a t e c on t r o l op en l oop (2 , 2 ) , 1 ) ) ) ;
790 s ens a lpha channe l = zpk ( minreal (1 − a lpha com vs a lpha t f ) ) ;
791 a lpha ps = zpk ( minrea l ( feedback ( de s i gn p l an t mat r i x (2 , 2 ) , . . .
792 i n t e r e s t e d i n t e rm e d i a t e c o n t r o l l e r t f ( 2 , 2 ) ) ) ) ;

273



www.manaraa.com

793 a lpha ks = zpk ( minrea l ( feedback ( . . .
794 i n t e r e s t e d i n t e rm e d i a t e c o n t r o l l e r t f ( 2 , 2 ) , d e s i gn p l an t mat r i x ( 2 , 2 ) ) ) ) ;
795 a lpha com vs a lpha t f . u = { '\ a lpha {commanded} ' } ;
796 a lpha com vs a lpha t f . y = { '\ a lpha { ac tua l } ' } ;
797
798 be ta com vs be ta t f = zpk ( minreal ( feedback ( . . .
799 i n t e rmed i a t e c on t r o l op en l oop (3 , 3 ) , 1 ) ) ) ;
800 s en s be ta channe l = zpk ( minreal (1 − be ta com vs be ta t f ) ) ;
801 beta ps = zpk ( minreal ( feedback ( de s i gn p l an t mat r i x (3 , 3 ) , . . .
802 i n t e r e s t e d i n t e rm e d i a t e c o n t r o l l e r t f ( 3 , 3 ) ) ) ) ;
803 beta ks = zpk ( minreal ( feedback ( . . .
804 i n t e r e s t e d i n t e rm e d i a t e c o n t r o l l e r t f ( 3 , 3 ) , d e s i gn p l an t mat r i x ( 3 , 3 ) ) ) ) ;
805 be t a com vs be t a t f . u = { '\beta {commanded} ' } ;
806 be t a c om vs be t a t f . y = { '\beta { ac tua l } ' } ;
807
808 w = logspace (−2 ,3 , 2000) ;
809 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 1 , 1 ) ,w) ;
810 f i g u r e (100)
811 semi logx (w,20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
812 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
813 hold on ;
814 t i t l e ( ' Frequency Response − A {y} to Ai l e ron ' , ' FontSize ' , 2 4 ) ;
815 g r id on ;
816 ax i s ( [ 0 .01 , 1000 , −60, 2 0 ] )
817 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
818 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
819 s e t (h , 'LineWidth ' , 5 ) ;
820 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
821 s e t (a , ' l i n ew idth ' , 4 ) ;
822 s e t (a , ' FontSize ' , 2 4 ) ;
823 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
824 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
825 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
826
827 w = logspace (−2 ,3 , 2000) ;
828 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 1 , 3 ) ,w) ;
829 f i g u r e (200)
830 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
831 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
832 hold on ;
833 t i t l e ( ' Frequency Response − A {y} to Rudder ' , ' FontSize ' , 2 4 ) ;
834 g r id on ;
835 ax i s ( [ 0 .01 , 1000 , −30, 3 0 ] )
836 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
837 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
838 s e t (h , 'LineWidth ' , 5 ) ;
839 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
840 s e t (a , ' l i n ew idth ' , 4 ) ;
841 s e t (a , ' FontSize ' , 2 4 ) ;
842 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
843 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
844 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
845
846 w = logspace (−2 ,3 , 2000) ;
847 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 2 , 2 ) ,w) ;
848 f i g u r e (300)
849 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
850 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
851 hold on ;
852 t i t l e ( ' Frequency Response − A {z} to Elevator ' , ' FontSize ' , 2 4 ) ;
853 g r id on ;
854 ax i s ( [ 0 .01 , 1000 , −50, 1 5 ] )
855 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
856 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
857 s e t (h , 'LineWidth ' , 5 ) ;
858 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
859 s e t (a , ' l i n ew idth ' , 4 ) ;
860 s e t (a , ' FontSize ' , 2 4 ) ;
861 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
862 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
863 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
864
865 w = logspace (−2 ,3 , 2000) ;
866 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 3 , 1 ) ,w) ;
867 f i g u r e (400)
868 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
869 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
870 hold on ;
871 t i t l e ( ' Frequency Response − \phi to Ai l e ron ' , ' FontSize ' , 2 4 ) ;
872 g r id on ;
873 ax i s ( [ 0 .01 , 1000 , −70, 7 0 ] )
874 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
875 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
876 s e t (h , 'LineWidth ' , 5 ) ;
877 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
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878 s e t (a , ' l i n ew idth ' , 4 ) ;
879 s e t (a , ' FontSize ' , 2 4 ) ;
880 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
881 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
882 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
883
884 w = logspace (−2 ,3 , 2000) ;
885 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 3 , 3 ) ,w) ;
886 f i g u r e (500)
887 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
888 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
889 hold on ;
890 t i t l e ( ' Frequency Response − \phi to Rudder ' , ' FontSize ' , 2 4 ) ;
891 g r id on ;
892 ax i s ( [ 0 .01 , 1000 , −150, 8 5 ] )
893 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
894 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
895 s e t (h , 'LineWidth ' , 5 ) ;
896 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
897 s e t (a , ' l i n ew idth ' , 4 ) ;
898 s e t (a , ' FontSize ' , 2 4 ) ;
899 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
900 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
901 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
902
903 w = logspace (−3 ,2 , 2000) ;
904 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 4 , 2 ) ,w) ;
905 f i g u r e (600)
906 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
907 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
908 hold on ;
909 t i t l e ( ' Frequency Response − \ theta to Elevator ' , ' FontSize ' , 2 4 ) ;
910 g r id on ;
911 ax i s ( [ 0 .001 , 100 , −50, 2 5 ] )
912 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
913 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
914 s e t (h , 'LineWidth ' , 5 ) ;
915 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
916 s e t (a , ' l i n ew idth ' , 4 ) ;
917 s e t (a , ' FontSize ' , 2 4 ) ;
918 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
919 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
920 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
921
922 w = logspace (−2 ,3 , 2000) ;
923 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 5 , 1 ) ,w) ;
924 f i g u r e (700)
925 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
926 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
927 hold on ;
928 t i t l e ( ' Frequency Response − \beta to Ai l e ron ' , ' FontSize ' , 2 4 ) ;
929 g r id on ;
930 ax i s ( [ 0 .01 , 1000 , −80, 1 0 ] )
931 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
932 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
933 s e t (h , 'LineWidth ' , 5 ) ;
934 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
935 s e t (a , ' l i n ew idth ' , 4 ) ;
936 s e t (a , ' FontSize ' , 2 4 ) ;
937 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
938 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
939 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
940
941 w = logspace (−2 ,3 , 2000) ;
942 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 5 , 3 ) ,w) ;
943 f i g u r e (800)
944 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
945 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
946 hold on ;
947 t i t l e ( ' Frequency Response − \beta to Rudder ' , ' FontSize ' , 2 4 ) ;
948 g r id on ;
949 ax i s ( [ 0 .01 , 1000 , −100, 2 5 ] )
950 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
951 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
952 s e t (h , 'LineWidth ' , 5 ) ;
953 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
954 s e t (a , ' l i n ew idth ' , 4 ) ;
955 s e t (a , ' FontSize ' , 2 4 ) ;
956 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
957 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
958 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
959
960 w = logspace (−2 ,3 , 2000) ;
961 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 6 , 2 ) ,w) ;
962 f i g u r e (900)
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963 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
964 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
965 hold on ;
966 t i t l e ( ' Frequency Response − \alpha to Elevator ' , ' FontSize ' , 2 4 ) ;
967 g r id on ;
968 ax i s ( [ 0 .01 , 1000 , −90, 0 ] )
969 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
970 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
971 s e t (h , 'LineWidth ' , 5 ) ;
972 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
973 s e t (a , ' l i n ew idth ' , 4 ) ;
974 s e t (a , ' FontSize ' , 2 4 ) ;
975 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
976 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
977 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
978
979
980 w = logspace (−3 ,2 , 2000) ;
981 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 7 , 2 ) ,w) ;
982 f i g u r e (1000)
983 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
984 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
985 hold on ;
986 t i t l e ( ' Frequency Response − \gamma to Elevator ' , ' FontSize ' , 2 4 ) ;
987 g r id on ;
988 ax i s ( [ 0 .001 , 100 , −90, 2 5 ] )
989 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
990 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
991 s e t (h , 'LineWidth ' , 5 ) ;
992 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
993 s e t (a , ' l i n ew idth ' , 4 ) ;
994 s e t (a , ' FontSize ' , 2 4 ) ;
995 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
996 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
997 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
998
999 w = logspace (−2 ,3 , 2000) ;

1000 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 8 , 1 ) ,w) ;
1001 f i g u r e (1100)
1002 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
1003 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1004 hold on ;
1005 t i t l e ( ' Frequency Response − P to Ai l e ron ' , ' FontSize ' , 2 4 ) ;
1006 gr id on ;
1007 ax i s ( [ 0 .01 , 1000 , −10, 3 0 ] )
1008 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1009 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1010 s e t (h , 'LineWidth ' , 5 ) ;
1011 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1012 s e t (a , ' l i n ew idth ' , 4 ) ;
1013 s e t (a , ' FontSize ' , 2 4 ) ;
1014 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1015 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1016 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1017
1018 w = logspace (−2 ,3 , 2000) ;
1019 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 8 , 3 ) ,w) ;
1020 f i g u r e (1200)
1021 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
1022 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1023 hold on ;
1024 t i t l e ( ' Frequency Response − P to Rudder ' , ' FontSize ' , 2 4 ) ;
1025 gr id on ;
1026 ax i s ( [ 0 .01 , 1000 , −100, 5 0 ] )
1027 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1028 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1029 s e t (h , 'LineWidth ' , 5 ) ;
1030 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1031 s e t (a , ' l i n ew idth ' , 4 ) ;
1032 s e t (a , ' FontSize ' , 2 4 ) ;
1033 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1034 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1035 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1036
1037 w = logspace (−2 ,3 , 2000) ;
1038 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s ( 9 , 2 ) ,w) ;
1039 f i g u r e (1300)
1040 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
1041 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1042 hold on ;
1043 t i t l e ( ' Frequency Response − Q to Elevator ' , ' FontSize ' , 2 4 ) ;
1044 gr id on ;
1045 ax i s ( [ 0 .01 , 1000 , −40, 2 0 ] )
1046 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1047 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
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1048 s e t (h , 'LineWidth ' , 5 ) ;
1049 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1050 s e t (a , ' l i n ew idth ' , 4 ) ;
1051 s e t (a , ' FontSize ' , 2 4 ) ;
1052 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1053 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1054 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1055
1056 w = logspace (−2 ,3 , 2000) ;
1057 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s (10 , 1 ) ,w) ;
1058 f i g u r e (1400)
1059 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
1060 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1061 hold on ;
1062 t i t l e ( ' Frequency Response − R to Ai l e ron ' , ' FontSize ' , 2 4 ) ;
1063 gr id on ;
1064 ax i s ( [ 0 .01 , 1000 , −120, 2 0 ] )
1065 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1066 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1067 s e t (h , 'LineWidth ' , 5 ) ;
1068 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1069 s e t (a , ' l i n ew idth ' , 4 ) ;
1070 s e t (a , ' FontSize ' , 2 4 ) ;
1071 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1072 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1073 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1074
1075 w = logspace (−2 ,3 , 2000) ;
1076 [ tf mag , t f pha s e ] = bode ( P l a n t t r a n s f e r f u n c t i o n ma t r i c e s (10 , 3 ) ,w) ;
1077 f i g u r e (1500)
1078 semi logx (w, 20∗ l og10 ( tf mag ( 1 , : ) ) , ' Color ' , . . .
1079 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1080 hold on ;
1081 t i t l e ( ' Frequency Response − R to Rudder ' , ' FontSize ' , 2 4 ) ;
1082 gr id on ;
1083 ax i s ( [ 0 .01 , 1000 , −30, 3 0 ] )
1084 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1085 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1086 s e t (h , 'LineWidth ' , 5 ) ;
1087 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1088 s e t (a , ' l i n ew idth ' , 4 ) ;
1089 s e t (a , ' FontSize ' , 2 4 ) ;
1090 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1091 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1092 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1093
1094 %% AUTOPILOT PLOTS
1095 w = logspace (0 ,4 , 2000) ;
1096 [ Control ler t fm mag , Cont ro l l e r t fm phase ] = bode ( Cont ro l l e r t fm (1 , 1 ) ,w) ;
1097 f i g u r e (1600)
1098 semi logx (w, 20∗ l og10 ( Contro l l e r t fm mag ( 1 , : ) ) , ' Color ' , . . .
1099 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1100 hold on ;
1101 t i t l e ( 'K { i } Frequency Response − Error {p} to Ai l e ron ' , ' FontSize ' , 2 4 ) ;
1102 gr id on ;
1103 ax i s ( [ 1 0 , 1000 , −40, 0 ] )
1104 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1105 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1106 s e t (h , 'LineWidth ' , 5 ) ;
1107 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1108 s e t (a , ' l i n ew idth ' , 4 ) ;
1109 s e t (a , ' FontSize ' , 2 4 ) ;
1110 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1111 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1112 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1113
1114
1115 [ Control ler t fm mag , Cont ro l l e r t fm phase ] = bode ( Cont ro l l e r t fm (2 , 2 ) ,w) ;
1116 f i g u r e (16000)
1117 semi logx (w, 20∗ l og10 ( Contro l l e r t fm mag ( 1 , : ) ) , ' Color ' , . . .
1118 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1119 hold on ;
1120 t i t l e ( 'K { i } Frequency Response − Error {q} to Elevator ' , ' FontSize ' , 2 4 ) ;
1121 gr id on ;
1122 ax i s ( [ 1 0 , 1000 , −20, 2 0 ] )
1123 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1124 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1125 s e t (h , 'LineWidth ' , 5 ) ;
1126 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1127 s e t (a , ' l i n ew idth ' , 4 ) ;
1128 s e t (a , ' FontSize ' , 2 4 ) ;
1129 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1130 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1131 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1132
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1133
1134 [ Control ler t fm mag , Cont ro l l e r t fm phase ] = bode ( Cont ro l l e r t fm (3 , 3 ) ,w) ;
1135 f i g u r e (160000)
1136 semi logx (w, 20∗ l og10 ( Contro l l e r t fm mag ( 1 , : ) ) , ' Color ' , . . .
1137 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1138 hold on ;
1139 t i t l e ( 'K { i } Frequency Response − Error { r} to Rudder ' , ' FontSize ' , 2 4 ) ;
1140 gr id on ;
1141 ax i s ( [ 1 0 , 1000 , −25, 2 0 ] )
1142 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1143 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1144 s e t (h , 'LineWidth ' , 5 ) ;
1145 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1146 s e t (a , ' l i n ew idth ' , 4 ) ;
1147 s e t (a , ' FontSize ' , 2 4 ) ;
1148 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1149 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1150 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1151
1152
1153 w = logspace (0 ,3 , 2000) ;
1154 [ open loop mag , open loop phase ] = bode ( open loop (1 , 1 ) ,w) ;
1155 f i g u r e (1700)
1156 semi logx (w, 20∗ l og10 ( open loop mag ( 1 , : ) ) , ' Color ' , . . .
1157 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1158 t i t l e ( 'Open Loop (P { i }K { i }) Frequency Response − 1ˆ{ s t } Channel ' , . . .
1159 ' FontSize ' , 2 4 ) ;
1160 gr id on ;
1161 ax i s ( [ 1 0 , 1000 , −50, 2 0 ] )
1162 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1163 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1164 s e t (h , 'LineWidth ' , 5 ) ;
1165 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1166 s e t (a , ' l i n ew idth ' , 4 ) ;
1167 s e t (a , ' FontSize ' , 2 4 ) ;
1168 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1169 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1170 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1171 hold on ;
1172
1173 [ open loop mag , open loop phase ] = bode ( open loop (2 , 2 ) ,w) ;
1174 f i g u r e (17000)
1175 semi logx (w, 20∗ l og10 ( open loop mag ( 1 , : ) ) , ' Color ' , . . .
1176 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1177 t i t l e ( 'Open Loop (P { i }K { i }) Frequency Response − 2ˆ{nd} Channel ' , . . .
1178 ' FontSize ' , 2 4 ) ;
1179 gr id on ;
1180 ax i s ( [ 1 0 , 1000 , −50, 2 0 ] )
1181 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1182 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1183 s e t (h , 'LineWidth ' , 5 ) ;
1184 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1185 s e t (a , ' l i n ew idth ' , 4 ) ;
1186 s e t (a , ' FontSize ' , 2 4 ) ;
1187 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1188 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1189 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1190 hold on ;
1191
1192 w = logspace (−1 ,3 , 2000) ;
1193 [ open loop mag , open loop phase ] = bode ( open loop (3 , 3 ) ,w) ;
1194 f i g u r e (170000)
1195 semi logx (w, 20∗ l og10 ( open loop mag ( 1 , : ) ) , ' Color ' , . . .
1196 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1197 t i t l e ( 'Open Loop (P { i }K { i }) Frequency Response − 3ˆ{ rd} Channel ' , . . .
1198 ' FontSize ' , 2 4 ) ;
1199 gr id on ;
1200 ax i s ( [ 0 .1 , 1000 , −50, 4 0 ] )
1201 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1202 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1203 s e t (h , 'LineWidth ' , 5 ) ;
1204 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1205 s e t (a , ' l i n ew idth ' , 4 ) ;
1206 s e t (a , ' FontSize ' , 2 4 ) ;
1207 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1208 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1209 legend ( 'Mach = 1 .068 ' , 'Mach = 1 .5114 ' , 'Mach = 2 .0420 ' ) ;
1210 hold on ;
1211
1212
1213 w = logspace (0 ,3 , 2000) ;
1214 [ pc to p mag , pc to p phase ] = bode ( pc to p ,w) ;
1215 [ sens p mag , s ens p phase ] = bode ( sens p ,w) ;
1216 f i g u r e (1800)
1217 semi logx (w, 20∗ l og10 ( pc to p mag ( 1 , : ) ) , ' Color ' , . . .
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1218 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1219 hold on ;
1220 semi logx (w, 20∗ l og10 ( sens p mag ( 1 , : ) ) , ' Color ' , . . .
1221 [ 0 .7−0. 1 ∗ j j 0 . 3+0.1 ∗ j j 0 .9−0. 1 ∗ j j ] )
1222 hold on ;
1223 t i t l e ( ' Inner Loop P channel S e n s i t i v i t i e s ' , ' FontSize ' , 2 4 ) ;
1224 gr id on ;
1225 ax i s ( [ 1 , 1000 , −50, 2 5 ] )
1226 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1227 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1228 s e t (h , 'LineWidth ' , 4 ) ;
1229 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1230 s e t (a , ' l i n ew idth ' , 4 ) ;
1231 s e t (a , ' FontSize ' , 2 4 ) ;
1232 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1233 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1234 legend ( 'T Mach = 1 .068 ' , 'S Mach = 1 .068 ' , 'T Mach = 1 .5114 ' , . . .
1235 'S Mach = 1 .5114 ' , 'T Mach = 2 .0420 ' , 'S Mach = 2 .0420 ' ) ;
1236 hold on ;
1237
1238
1239 w = logspace (0 ,3 , 2000) ;
1240 [ qc to q mag , qc to q phase ] = bode ( qc to q ,w) ;
1241 [ sens q mag , s ens q phase ] = bode ( sens q ,w) ;
1242 f i g u r e (1900)
1243 semi logx (w, 20∗ l og10 ( qc to q mag ( 1 , : ) ) , ' Color ' , . . .
1244 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1245 hold on ;
1246 semi logx (w, 20∗ l og10 ( sens q mag ( 1 , : ) ) , ' Color ' , . . .
1247 [ 0 .7−0. 1 ∗ j j 0 . 3+0.1 ∗ j j 0 .9−0. 1 ∗ j j ] )
1248 hold on ;
1249 t i t l e ( ' Inner Loop Q channel S e n s i t i v i t i e s ' , ' FontSize ' , 2 4 ) ;
1250 gr id on ;
1251 ax i s ( [ 5 , 1000 , −50, 2 5 ] )
1252 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1253 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1254 s e t (h , 'LineWidth ' , 5 ) ;
1255 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1256 s e t (a , ' l i n ew idth ' , 4 ) ;
1257 s e t (a , ' FontSize ' , 2 4 ) ;
1258 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1259 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1260 legend ( 'T Mach = 1 .068 ' , 'S Mach = 1 .068 ' , 'T Mach = 1 .5114 ' , . . .
1261 'S Mach = 1 .5114 ' , 'T Mach = 2 .0420 ' , 'S Mach = 2 .0420 ' ) ;
1262 hold on ;
1263
1264
1265 w = logspace (0 ,3 , 2000) ;
1266 [ rc to r mag , r c t o r pha s e ] = bode ( r c t o r ,w) ;
1267 [ sens r mag , s en s r pha s e ] = bode ( s ens r ,w) ;
1268 f i g u r e (2000)
1269 semi logx (w, 20∗ l og10 ( r c to r mag ( 1 , : ) ) , ' Color ' , . . .
1270 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1271 hold on ;
1272 semi logx (w, 20∗ l og10 ( sens r mag ( 1 , : ) ) , ' Color ' , . . .
1273 [ 0 .7−0. 1 ∗ j j 0 . 3+0.1 ∗ j j 0 .9−0. 1 ∗ j j ] )
1274 hold on ;
1275 t i t l e ( ' Inner Loop R channel S e n s i t i v i t i e s ' , ' FontSize ' , 2 4 ) ;
1276 gr id on ;
1277 ax i s ( [ 1 , 1000 , −50, 2 0 ] )
1278 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1279 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1280 s e t (h , 'LineWidth ' , 5 ) ;
1281 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1282 s e t (a , ' l i n ew idth ' , 4 ) ;
1283 s e t (a , ' FontSize ' , 2 4 ) ;
1284 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1285 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1286 legend ( 'T Mach = 1 .068 ' , 'S Mach = 1 .068 ' , 'T Mach = 1 .5114 ' , . . .
1287 'S Mach = 1 .5114 ' , 'T Mach = 2 .0420 ' , 'S Mach = 2 .0420 ' ) ;
1288 hold on ;
1289
1290
1291 w = logspace (−1 ,1 , 2000) ;
1292 [ phi com vs phi mag , ph i com vs ph i phase ] = bode ( ph i com vs ph i t f ,w) ;
1293 [ sens phi mag , s en s ph i phase ] = bode ( sens ph i channe l ,w) ;
1294 f i g u r e (2100)
1295 semi logx (w, 20∗ l og10 ( phi com vs phi mag ( 1 , : ) ) , ' Color ' , . . .
1296 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1297 hold on ;
1298 semi logx (w, 20∗ l og10 ( sens phi mag ( 1 , : ) ) , ' Color ' , . . .
1299 [ 0 . 5+0.2 ∗ j j 0 . 2+0.1 ∗ j j 0 .7−0. 2 ∗ j j ] )
1300 hold on ;
1301 t i t l e ( ' Intermediate Loop \phi Channel S e n s i t i v i t i e s ' , ' FontSize ' , 2 4 ) ;
1302 gr id on ;
1303 ax i s ( [ 0 .1 , 10 , −40, 5 ] )
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1304 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1305 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1306 s e t (h , 'LineWidth ' , 5 ) ;
1307 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1308 s e t (a , ' l i n ew idth ' , 4 ) ;
1309 s e t (a , ' FontSize ' , 2 4 ) ;
1310 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1311 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1312 legend ( 'T Mach = 1 .068 ' , 'S Mach = 1 .068 ' , 'T Mach = 1 .5114 ' , . . .
1313 'S Mach = 1 .5114 ' , 'T Mach = 2 .0420 ' , 'S Mach = 2 .0420 ' ) ;
1314 hold on ;
1315
1316
1317 w = logspace (−4 ,1 , 2000) ;
1318 [ alpha com vs alpha mag , a lpha com vs a lpha phase ] = bode ( . . .
1319 a lpha com vs a lpha t f ,w) ;
1320 [ sens alpha mag , s ens a lpha phase ] = bode ( sens a lpha channe l ,w) ;
1321 f i g u r e (2200)
1322 semi logx (w, 20∗ l og10 ( alpha com vs alpha mag ( 1 , : ) ) , ' Color ' , . . .
1323 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1324 hold on ;
1325 semi logx (w, 20∗ l og10 ( sens alpha mag ( 1 , : ) ) , ' Color ' , . . .
1326 [ 0 . 5+0.2 ∗ j j 0 . 2+0.1 ∗ j j 0 .7−0. 2 ∗ j j ] )
1327 hold on ;
1328 t i t l e ( ' Intermediate Loop \alpha Channel S e n s i t i v i t i e s ' , ' FontSize ' , 2 4 ) ;
1329 gr id on ;
1330 ax i s ( [ 0 .0001 , 10 , −40, 5 ] )
1331 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1332 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1333 s e t (h , 'LineWidth ' , 5 ) ;
1334 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1335 s e t (a , ' l i n ew idth ' , 4 ) ;
1336 s e t (a , ' FontSize ' , 2 4 ) ;
1337 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1338 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1339 legend ( 'T Mach = 1 .068 ' , 'S Mach = 1 .068 ' , 'T Mach = 1 .5114 ' , . . .
1340 'S Mach = 1 .5114 ' , 'T Mach = 2 .0420 ' , 'S Mach = 2 .0420 ' ) ;
1341 hold on ;
1342
1343
1344 w = logspace (−1 ,1 , 2000) ;
1345 [ beta com vs beta mag , beta com vs beta phase ] = . . .
1346 bode ( be ta com vs be ta t f ,w) ;
1347 [ sens beta mag , s en s be ta phase ] = bode ( sens beta channe l ,w) ;
1348 f i g u r e (2300)
1349 semi logx (w, 20∗ l og10 ( beta com vs beta mag ( 1 , : ) ) , ' Color ' , . . .
1350 [ 0 .7−0. 1 ∗ j j 0 . 2+0.1 ∗ j j 0 . 2+0.1 ∗ j j ] )
1351 hold on ;
1352 semi logx (w, 20∗ l og10 ( sens beta mag ( 1 , : ) ) , ' Color ' , . . .
1353 [ 0 . 5+0.2 ∗ j j 0 . 2+0.1 ∗ j j 0 .7−0. 2 ∗ j j ] )
1354 hold on ;
1355 t i t l e ( ' Intermediate Loop \beta Channel S e n s i t i v i t i e s ' , ' FontSize ' , 2 4 ) ;
1356 gr id on ;
1357 ax i s ( [ 0 .1 , 10 , −30, 5 ] )
1358 s e t ( f i ndob j ( gca , ' type ' , ' l i n e ' ) , 'LineWidth ' , 2 ) ;
1359 h = f i ndob j ( gcf , ' type ' , ' l i n e ' ) ;
1360 s e t (h , 'LineWidth ' , 5 ) ;
1361 a = f i ndob j ( gcf , ' type ' , ' axes ' ) ;
1362 s e t (a , ' l i n ew idth ' , 4 ) ;
1363 s e t (a , ' FontSize ' , 2 4 ) ;
1364 x l ab e l ( ' Frequency ( rad/ sec ) ' , ' FontSize ' , 2 4 ) ;
1365 y l ab e l ( ' S ingu la r Values (db) ' , ' FontSize ' , 2 4 ) ;
1366 legend ( 'T Mach = 1 .068 ' , 'S Mach = 1 .068 ' , 'T Mach = 1 .5114 ' , . . .
1367 'S Mach = 1 .5114 ' , 'T Mach = 2 .0420 ' , 'S Mach = 2 .0420 ' ) ;
1368 hold on ;
1369
1370 end % END OF FOR LOOP
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